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1 Introduction
In this course we will be interested in various aspects of SAT, the Boolean satisfiability problem,
which is the problem of finding solutions to propositional (or Boolean) formulas. This problem is
not just central to the complexity theory, it is extremely important for practical applications, as
many computational problems are very naturally reduced to SAT. Our focus will be on the topics
described in the following picture:

SAT algorithms

SAT solvers UNSAT proofs

General
theory

2 Background
This section is intended to remind definitions and facts learned in earlier courses, and to unify the
notation.

2.1 Terminology and Notation

2.1.1 Formulas

• Boolean (propositional) variables x1, x2, . . . , xn can take (truth) values True or False (aka
1 or 0). We will typically use n to denote the number of variables.

• Literals are variables xi (“positive literals”) or the negations of variables xi (“negative liter-
als”).

• Clauses are sets of literals interpreted as disjunctions ℓ1 ∨ . . . ∨ ℓk. Normally, we assume
that x and x do not occur together.

• A formula in conjunctive normal form (CNF) is a conjunction of clauses (maxterms): F =
C1 ∧ . . . ∧ Cm for clauses C1, . . . , Cm, for example,

(x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ y).

• A formula in disjunctive normal form (DNF) is a disjunction of conjunctions (minterms),
for example,

(x ∧ y) ∨ (x ∧ y) ∨ (x ∧ y ∧ z) ∨ (x ∧ y).
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If we negate a DNF tautology, we obtain an unsatisfiable CNF formula. We will frequently
call such two formulas by the same name (for example, the propositional pigeonhole princi-
ple).

2.1.2 Truth Assignments

• A (complete) (truth) assignment maps all variables to truth values.

• A partial assignment maps some variables to their values.

We will denote assignments in two ways:

assignment x← False, y ← True, z ← True

assignment {x, y, z}

Let F be a formula in CNF, and A be a (partial) assignment.

• Substitution is the application of A to F , its result is denoted F [A]:

– we remove all the satisfied clauses,

– we remove false literals from the other clauses.

For example, F = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ y),

F [x← True] = /////////(x ∨ y) ∧ (//x ∨ y) ∧ (y ∨ z) ∧ (//x ∨ y).

• A satisfying assignment A satisfies all clauses, that is, F [A] = ∅ (= True).

• If a formula has at least one satisfying assignment, it is satisfiable; otherwise it is unsat-
isfiable.

2.2 PHP: The propositional pigeonhole principle

The propositional pigeonhole principle (PHP) plays an important role as an example of a “hard”
formula: it provides both benchmarks for SAT solvers and candidate formulas for exponential
lower bounds on the size of the smallest refutation.

We all know the pigeonhole principle as a basic mathematical fact usually formulated as the
absence of an injective mapping of a set of larger cardinality to a set of smaller cardinality.

The propositional formulation of (the negation of) PHP for a specific number of pigeons and
holes is an important example of an unsatisfiable formula in CNF that is hard for many popular
SAT solvers (and proof systems):
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• xi,j ∼ pigeon i sits in hole j
(1 ⩽ i ⩽ m, 1 ⩽ j ⩽ m− 1),

• xi,j ∨ xi′,j (for each i, j, i′ ̸= i):
two pigeons i, i′ do not share the same hole j,

• xi,1 ∨ . . . ∨ xi,m−1 (for each i):
pigeon i is assigned to some hole.

1

2

3

4

5

6
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The (unsatisfiable) negation of PHP is in CNF. The corresponding tautology is in DNF.

2.3 Complexity remarks

2.3.1 Search or Decision?

NP problems come in two versions:

SAT, decision version: Given a formula, check its satisfiability (return True/False).

SAT, search version: Given a formula, find a satisfying assignment (or say “no”).

The following procedure shows that for NP-complete problems they are polynomially equivalent.

Search-to-decision(F):
if (F = ∅) then print("yes")
elif (∅ ∈ F) then print("no")
elif (SAT(F [x← 0])) // x is the first variable

then { print(x); Search-to-decision(F [x← 0]); }
else { print(x); Search-to-decision(F [x← 1]); }

Why does it run in a polynomial time?

We always dive in a subtree where a satisfying assignment
hides without examining another subtree.

So we only have to process a single path! (See the picture.)

F

F [x1 ← False]

F [x2 ← False] F [x2 ← True]

F [x1 ← True]

F [x2 ← False] F [x2 ← True]

2.3.2 Complexity properties of SAT

• SAT is in NP as it is easy to verify candidate solutions.

• SAT is NP-complete (Cook–Levin Theorem), that is, other problems in NP reduce to it in
polynomial time.

• Moreover, they reduce in a natural way, which is very useful.
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• Even some restricted versions of SAT are hard:

k-CNF: every clause contains at most k literals; the problem: k-SAT.
A clause containing k literals: k-clause.

Even 3-SAT is already NP-complete.

• Sometimes SAT is called “CNF SAT”. One can consider non-CNF SAT (arbitrary formulas
using Boolean operations).

Remark 1. UNSAT (where one needs to answer 1 if the input formula in CNF is unsatisfiable)
is co-NP-complete, that it, it is in co-NP and every problem in co-NP1 is polynomial-time
many-one (Karp) reducible to it. The same happens for TAUT, the problem that asks whether
a Boolean formula in DNF is a tautology (think why!).
Exercise 1 (Warmup). Reduce 3-SAT to its instances containing at most 3 occurrences of every variable.

3 Schaefer’s Dichotomy Theorem
Can one understand that a formula is easy from its syntax? Sometimes yes.

In this section we consider several classes of formulas where we can check the satisfiability in
a polynomial time. We give polynomial-time algorithms for them and then formulate the result
indicating that these are essentially all such classes defined in terms of constraint satisfaction
problems.

3.1 Polynomial-time tractable classes of formulas

Horn formulas. This is our first polynomial-time tractable class.

Definition 1 (Horn formulas, Alfred Horn). A formula in CNF is called Horn if every
its clause contains at most one positive literal.

A clause containing a single literal is called unit clause. The value of such literal is, of
course, evident from the clause.

Notice that if a Horn formula contains no unit (and no empty) clauses, it is satisfiable by
the all-0 assignment.

The following simple procedure that eliminates unit clauses (it is also called unit propa-
gation) is in fact a very important one not just for Horn-SAT. In particular, in practice
SAT solvers spend most of their time doing it, so optimizing this procedure is crucial for the
success of a SAT solver.

1For a complexity class C, the class co−C contains every language (decision problem) L such that its complement
L ∈ C. In particular, languages in co-NP are those where we can verify solutions for the answer 0. It is a major
open problem whether NP = co-NP (it is implied by, but not necessarily equivalent to, P = NP).
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Unit-clause-elimination(F):
while (there is (ℓ) ∈ F) do F := F [ℓ].

This procedure

• does not change the satisfiability,

• the formula remains Horn.

To solve SAT for a Horn formula F , apply Unit-clause-elimination to F .

If afterwards F contains the empty clause, then it is, of course, unsatisfiable. Otherwise it
is satisfiable.

Example 1. Here is how Unit-clause-elimination works on a Horn formula:

(x) (y ∨ z) (x ∨ y) (x ∨ z)

(x) (y ∨ z) (x ∨ y) (x ∨ z)

(y ∨ z) (y) (z)

(y ∨ z) (y) (z)

(y) (y)

(y) (y)

()

Anti-Horn formulas is our second “easy” class (dual to Horn formulas).

Definition 2. An anti-Horn (or dual Horn) formula contains at most one negative literal
per clause.

Systems of linear (affine) equations modulo two. These are xor-relations of the form
xi1 ⊕ . . .⊕ xik = b, where constant b ∈ {0, 1}.
Example 2.

x1 ⊕ x2 ⊕ x3 = 1

x2 ⊕ x4 ⊕ x5 = 0

x1 ⊕ x4 = 0

x1 ⊕ x5 = 1

As all linear systems, systems modulo two can be solved using the Gaussian elimination
algorithm.

Note that every such equation in k variables is expressed by 2k−1 clauses, and this represen-
tation can be easily recognized. For example, for k = 2 this is

x⊕ y ∼ (x ∨ y) ∧ (x ∨ y)
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2-SAT. A reminder from the Algorithms-2 course.

We transform a 2-CNF formula into a directed graph with 2n vertices:

• We introduce a vertice for every literal.

• A clause ℓ ∨ ℓ′ is mapped to the two edges ℓ→ ℓ′ and ℓ′ → ℓ.

Note that the formula is unsatifiable iff for some variable x, there is a directed cycle con-
taining both x and x.

Algorithm: Construct strongly connected components and check this.

Warning: the optimization problem MAX-SAT asking for an assignment satisfying the
maximum possible number of clauses, remains NP-hard even for 2-CNFs.

3.2 Constraint Satisfaction Problem

We now put our polynomially tractable classes in the context of the Constraint Satisfaction Prob-
lem. In fact, this problem is an umbrella name for many computational problems formulated using
a pre-defined set of relations.

Definition 3 (CSP). A Constraint Satisfaction Problem (CSP) is parameterized by a finite
domain D = [1..n] and a (not necessarily finite) set of relations Ri : D

ai → {0, 1}.
Input: Constraints C1, . . . , Cm of the form Cj = (rj, sj), where

• rj is one of the Ri’s,

• dj = ai,

• sj is a dj-size tuple of D-valued variables {x1, . . . , xn}.

Output: a satisfying assignment f : [1..n]→ D such that for every j,

rj(f(sj,1), . . . , f(sj,dj)) = True

or “no” if it does not exist.

Remark 2. One can consider different domains for different variables. Moreover, one can consider
even infinite domains, but it is another story.

CSP thus asks for a satisfying assignment to a conjunction of relation(s)-based conditions. It
gives a way to define various computational problems. We consider two examples:

SAT 3-COLORING CSP
domains {0,1} {0,1,2} any
relations disjunctions of literals non-equality some relations
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Example 3 (3-COLORING). This is a problem asking for vertex coloring of a graph in 3 colors
such that adjacent vertices have different colors.

Domain: Three colors {0, 1, 2}.
Relation: R(x, y) = (x ̸= y).
Input: {(R, {xu, xv}) : {u, v} ∈ E} for a graph G = (V,E) and variables xv for v ∈ V .
Output: f : V → {0, 1, 2} s.t. f(x) ̸= f(y) for every edge {u, v} ∈ E.

1

2

2

0

Example of a formula: R(xa, xb) ∧ R(xb, xc) ∧ R(xc, xd) ∧ R(xd, xa) ∧ R(xa, xc).

Example 4 (2-SAT).
Domain: Boolean {False, True}.
Relations:

R1(x, y) = x ∨ y R5(x) = x

R2(x, y) = x ∨ y R6(x) = x

R3(x, y) = x ∨ y

R4(x, y) = x ∨ y

Example of a formula: R1(x, y) ∧ R2(x, z) ∧ R6(x).

3.3 Schaefer’s dichotomy theorem

As we know, CSP over {0, 1} for clauses (disjunctions where some arguments are negated) is called
SAT. Schaefer’s theorem tells us that the following types of Boolean CSPs are the only types that
admit polynomial-time SAT algorithms unless P = NP.

1. CSP for 2-clauses and 1-clauses (and their conjunctions), that is, 2-SAT.

2. CSP for xor-relations (and their conjunctions), that is, XOR-SAT.

3. CSP for Horn clauses (and their conjunctions), that is, Horn-SAT.

4. CSP for anti-Horn clauses (and their conjunctions), that is, anti-Horn-SAT.

5. CSP for all relations R such that R(1, . . . , 1) = 1 (called 1-valid).

6. CSP for all relations R such that R(0, . . . , 0) = 1 (called 0-valid).

Theorem 1 (Schaefer, 1978). Consider a set of relations R over the domain {0, 1}. If all of them
belong to the same single type out of (1)–(6), plus trivially false and trivially true relations, then
CSP for R is polynomial-time solvable. Otherwise it is NP-hard.

We have already proved the first part of this theorem, and we will not prove the NP-hardness
part in this course.

Remark 3. While 2-SAT, (Anti)Horn, XOR-SAT are polynomial-time solvable, any mix of
them is not necessarily that easy!

8



4 Boolean circuits
Boolean circuits are an abstraction for computations that have fixed-length inputs. Many good
examples of such computations can be found in the circuitry of a CPU, for example, 64-bit
arithmetic operations.

The verification of such computations naturally leads to checking the satisfiability of Boolean
formulas, thus it is a popular source of benchmarks for SAT solvers.

4.1 The basics

Definition 4. A Boolean circuit is a directed acyclic graph. Its sources (nodes of in-degree
zero) are called inputs and are labelled by Boolean variables. Its internal nodes (called gates)
are labelled by binary2 Boolean operations. Some of the nodes are designated as outputs.

The computation of a circuit is performed in a natural way: the inputs get values, then one
computes the values of the gates that already have values on the incoming edges, etc.

Example 5 (Full Adder). The following circuit is a building block for integer addition. (Green
numbers show the values propagating from the top to the bottom.)

xi
1 yi

0
ci

1

⊕
1

∨
1

⊕
0

∨
1

∧
1

1 (new carry ci+1)0 (result bit zi)

Circuit-SAT is a generalization of SAT, and it is obviously in NP, so it is, of course,
polynomially equivalent to SAT.

The reduction is very natural. To reduce the satisfiability problem for circuits (are there input
values such that the circuit evaluates to 1) to 3-SAT one can use Tseitin’s translation.

The resulting 3-CNFs will have both old variables (present in the circuit itself) and new aux-
iliary variables, one for every internal gate.

Every auxiliary variable comes with a bunch of clauses expressing that its value is computed
correctly. For example, if a gate is labelled with ∧, one adds the following three clauses:

∧
w

u v (w ∨ u) ∧
(w ∨ v) ∧
(u ∨ v ∨ w)

2The negations are usually embedded to the adjacent nodes.
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Exercise 2 (k-SAT→ 3-SAT). Reduce k-SAT to 3-SAT introducing fewer new variables than
in Tseitin’s transformation. Then show how to restore the satisfying assignment.
Remark 4. One popular way to prove the Cook–Levin theorem is to replace a non-deterministic
polynomial-time Turing machine by a Boolean circuit, thus showing the NP-completeness of
Circuit-SAT. The inputs of the constructed circuit are the bits of the witness (solution), and
the gates are arranged in levels, level i describing the full configuration of the machine at step i.
The number of steps is defined by the polynomial that bounds the running time of the machine
applied to the actual length of its input. Level 0 describes the starting configuration formed using
the input of the machine (constants hardwired to the circuit), the witness, and other necessary
attributes of the machine. Levels i and i + 1 are connected using subcircuits performing the
correct computation of the next configuration. The output checks whether the machine comes to
an accepting configuration.

4.2 Equivalence checking

Equivalence checking is a major problem in circuit design and verification. It is a very important
application of SAT and a very popular source of benchmarks for SAT solvers.

Equivalence checking is asking whether two Boolean circuits compute the same function. Imag-
ine that you have two versions of some circuit, say, 64-bit integer multiplication: a good old one
and a new experimental highly optimized one. How can you make sure that the new circuit does
the same thing as the old one?

Definition 5 (Equivalence checking). For two circuits f and g, check whether there are
x1, . . . , xn ∈ {0, 1} such that f(x1 · · ·xn) ̸= g(x1 · · · xn).

This problem can be expressed as the satisfiability of a circuit comparing the outputs of f and
g: just merge the two circuits sharing the same inputs and connect their outputs by ∨ of ⊕’s.
Example 6.

x y c

⊕ ⊕

∨

Old FA New FA
Full Adder

Remark 5. If we find a satisfying assignment for this circuit, it means that we have found a bug
in the newly suggested hardware.

However, what if a bug is not found? Even if our algorithm is deterministic and worked till it
outputted “UNSAT”, can we be absolutely confident that the circuits are indeed equivalent? An
error can cost billions of dollars, thus companies strongly prefer to have provably correct hardware.
We will later talk about proof systems that can such provide such proofs.
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5 Practical SAT solving: An overview

5.1 Solvers and Benchmarks

A SAT solver is simply a program that solves SAT. While SAT is NP-complete, we still need
to solve it (well, some of it cases) in practice.

How is it possible? SAT solvers use highly heuristic algorithms, and of course they are very
slow on some inputs — hopefully, not on those that we will need when we use the solver.

Solvers regularly participate in SAT Competition3: a regular race of SAT solvers. During a
competition, the solvers are run on sets of benchmarks and are compared on the basis of how
many benchmarks they solve within specified time slice (see https://satcompetition.github.
io/2023/downloads/satcomp23slides.pdf for an example).

What is a benchmark? It is simply a Boolean formula used to compare the performance of
SAT solvers on it. SAT Competitions maintain a database of benchmarks:

• industrial (equivalence checking, and more),

• handcrafted (known to be hard: for example, PHP),

• randomly generated.

“Industrial” benchmarks are frequently “easy” (for example, contain lots of 2-clauses). Thus
data structures and efficient implementation are very important.

Remark 6. Nowadays SAT solvers are used not only in the industrial applications. Even mathe-
maticians use them to check their combinatorial conjectures. It takes only a few minutes to write
down a CNF and run a SAT solver on it!

There are many solvers developed both in the academia and in the industry (an example in
Israel is Intel® SAT Solver developed in Haifa by Alexander Nadel4).

5.2 Classification of SAT Solvers

Solvers can be classified by several features.

1. Completeness.

• Complete:

– outputs a satisfying assignment, if it finds one,
– says “UNSAT” if there is none,
– may produce a proof of unsatisfiability.

• Incomplete:

– can also return “UNKNOWN”.
3www.satcompetition.org
4drops.dagstuhl.de/opus/volltexte/2022/16682/pdf/LIPIcs-SAT-2022-8.pdf
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2. Randomness.

• Randomized:

– Errorless (just using randomness to tune the heuristics).
– Bounded-error (sometimes also called incomplete. . . ).

• Deterministic.

3. The ability to use multiple processors / threads.

• Parallel.

• Sequential.

5.3 Competition Formats: Input and Output

Competition formats using to process CNFs and to output satisfying assignments are self-explanatory.

5.3.1 Input.

• Benchmarks.

– (Simplified) DIMACS format:
(x1 ∨ x5 ∨ x4) ∧ (x1 ∨ x5 ∨ x3 ∨ x4) ∧ (x3 ∨ x4) is described as

c
c start with comments
c here is a CNF with 5 variables and 3 clauses
c
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0

– RTL format

∗ Serves for describing Boolean circuits

5.3.2 Output.

• Decisions and Assignments:
the positive answer with sat. assignment x1, x3, x4, x6 is described as

c Comments are still allowed
s SATISFIABLE
v 1 3
v -4 6 0
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• Proofs of unsatisfiability (if required)

– DRAT format (too early to explain).

• Format descriptions and other rules:
https://satcompetition.github.io/2023/

Further reading
As this lecture is introductory, there is no single source for the material. One can check any
edition of SAT Handbook (Handbook of Satisfiability, edited by Armin Biere, Marijn Heule, Hans
van Maaren, and Toby Walsh; published by IOS Press), in particular the exposition of Schaefer’s
theorem follows the chapter “Worst-Case Upper Bounds”. One can also check the SAT Competition
web site out of curiosity. However, in fact the subject is covered sufficiently in these lecture notes.
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