
Boolean Satisfiability
Lecture 2: Faster-than-2n algorithms (Part I)

Edward A. Hirsch∗

January 8, 2024

Lecture 2
In this lecture we start studying algorithms that are able to solve k-SAT (and, to a certain extent,
SAT) faster than in 2n steps. Some of them also form the base for practical algorithms (SAT
solvers).

Contents
1 DPLL: Divide-and-conquer 1

1.1 The first attempt. Splitting over variables from the same clause 2
1.2 The second attempt. Grouping the cases in splitting over a clause 3
1.3 Branching tuples: Estimating the recurrency . 3
1.4 The third attempt: We can always find a 2-clause 4
1.5 Other tricks to extend DPLL . 5
1.6 Making DPLL practical . 6

2 PPZ: Random permutations 7
2.1 The case of a single assignment . 7
2.2 The general case . 8

Historical notes and further reading 10

1 DPLL: Divide-and-conquer
It is obvious that we can solve SAT in 2n steps, just consider the two possible assignments for
every variable. In the context of SAT, reducing the problem for a formula F to several simpler

∗Ariel University, http://edwardahirsch.github.io/edwardahirsch

1

http://edwardahirsch.github.io/edwardahirsch

formulas F1, . . . , Fk is called branching or splitting. (In particular, splitting over a variable x
means reduction to the two formulas F1 = F [x← 1] and F2 = F [x← 0].)

F

F [x1]

F [x1, x2]F [x1, x2]

F [x1]

F [x1, x2]F [x1, x2]

However, can we do better than 2n?
Important note: In what follows we will ignore polynomial factors and pay attention to the
exponential factor only. The following notation helps us stating it explicitly.

Definition 1. We write f(n) = Õ(g(n)) if f(n) = O(g(n) · size(F)k) for some k ∈ N. Here, “size”
refers to the input length (the bit-size of the representation of F in the machine), while n refers
to any complexity parameter (going to +∞), such as the number of variables.

For example, we write Õ(2n) when our algorithm performs 2n steps, each step taking quadratic
time O(|F |2).

1.1 The first attempt. Splitting over variables from the same clause
For a simple better-than-2n algorithm, we start
with solving 3-SAT by “almost” exhaustive search.
Namely, when we choose variables for splitting from
the same clause, thus getting only 7 partial assign-
ments out of the 23 = 8 possible. The reason is that
one assignment is definitely not satisfiable: the one
that falsifies all literals of the chosen clause (see the
picture). For 3-SAT, we take a 3-clause. Then con-
tinue splitting the obtained formulas until we arrive
at a formula that does not contain a 3-clause.

(ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ G

G[ℓ1, ℓ2, ℓ3]G[ℓ1, ℓ2, ℓ3]G[ℓ1, ℓ2, ℓ3]G[ℓ1, ℓ2, ℓ3]G[ℓ1, ℓ2, ℓ3]G[ℓ1, ℓ2, ℓ3]G[ℓ1, ℓ2, ℓ3]G[ℓ1, ℓ2, ℓ3]

We can easily analyze this algorithm. Let us estimate the number of leaves in the so-constructed
branching tree.

Denote T (F) := the number of leaves in the tree for the formula F .
Also denote T (n) := max

vars(F)=n
T (F), the number of leaves in the worst possible branching tree for

a 3-CNF formula containing n variables.
Since we remove 3 variables and get only 7 cases, we get the recurrency

T (n) ⩽ 7 · T (n− 3) ⩽ . . . ⩽ 7⌈n/3⌉ = O
((

3
√
7
)n)

= O(1.92n).

If F does not contain a 3-clause, then its satisfiability can be checked in polynomial time. Thus
the overall running time is Õ(1.92n).

2

1.2 The second attempt. Grouping the cases in splitting over a clause

Let us do the same thing more efficiently. Indeed, let us
be lazy and let us delay splitting of G[ℓ1] for the future.
Same with G[ℓ1, ℓ2]. Look at the picture what we get.

(ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ G

G[ℓ1] G[ℓ1, ℓ2] G[ℓ1, ℓ2, ℓ3] G[ℓ1, ℓ2, ℓ3]

Thus the recurrency is now T (n) ⩽ T (n− 1)+T (n− 2)+T (n− 3). In fact, we can prove that
T (n) = O(1.84n); to resolve such recurrencies fast, we prove a general lemma.

1.3 Branching tuples: Estimating the recurrency

Assume k ⩾ 2, T (n) ⩽
∑k

i=1 T (n− ai).
Call a⃗ = (a1, . . . , ak) ∈ Nk

⩾1 a branching tuple.
Call χa⃗(x) = 1−

∑k
i=1 x

−ai its characteristic polynomial.

T (n)

T (n− a1)T (n− a2) . . . T (n− ak)

Note that for any a⃗, χa⃗(x) →
x→0+

−∞ and χa⃗(x) →
x→+∞

1, and χa⃗ is monotone in between. Thus
χa⃗ has exactly one positive root, let us call this root the branching number and denote it by τa⃗.

Lemma 1 (branching numbers). Let µ: {formulas} → R⩾0 be some complexity measure of formulas
(for example, the number of variables).

Consider a tree that splits formulas as G 7→ G1, . . . , Gk, where ∀i µ(Gi) ⩽ µ(G) − ai. The
number k and the branching tuple a⃗ can be different for different formulas present in the tree.

Let τ = maxa⃗ τ (⃗a) for all branching tuples a⃗ present in the tree, and let F be the formula in
the root of the tree. Then T (F) ⩽ τµ(F).

Proof. We proceed by induction. The base (a leaf L) is trivial: 1 ⩽ τµ(L) since µ is nonnegtive.
Now assume that the statement is true for all formulas smaller than F (that is, with fewer

variables). Then

T (F) ⩽
k∑

j=1

T (Fj)
(ind)

⩽
k∑

j=1

τµ(Fj) ⩽
k∑

j=1

τµ(F)−aj = τµ(F) ·
k∑

j=1

τ−aj = τµ(F)(1− χt⃗(τ)) ⩽ τµ(F).

The last inequality holds, because τ is the root of some characteristic polynomial present in the
tree. If it corresponds to t⃗, then χt⃗(τ) = 0, otherwise the branching number for t⃗ is even smaller,
and thus χt⃗(τ) ⩾ 0 by the monotonicity of χt⃗.

Remark 1. While we will be using natural µ such as the number of variables or the number of
clauses, more complicated measures of complexity are also used in the literature, for example, (not
necessarily nonnegative) linear combinations involving the number of 2-clauses and other good or
bad things appearing in the formula. This is called amortized analysis, and it is out of scope of
this course.

We can now apply the lemma to the algorithm in Sect. 1.2; solving the equation 1 − x−1 −
x−2 − x−3 = 0 numerically, we get x ≈ 1.839, thus getting O(1.84n) leaves. Note that we could

3

avoid referring to 2-SAT ∈ P and use 2-clauses for splitting as well, because for the respective
recurrency T (n) ⩽ T (n − 1) + T (n − 2) the branching number is even smaller, namely, it is the
root of 1− x−1 − x−2 = 0, that is, x2 − x− 1 = 0, and this is the golden ratio ϕ < 1.62 < 1.84.

It would be great to split always over a 2-clause!

1.4 The third attempt: We can always find a 2-clause

Let us formulate the notion of a DPLL algorithm in general terms.

Algorithm 1 (DPLL = Davis, Putnam, Logemann, Loveland). The algorithm uses an
external polynomial-time procedure Π for checking the satisfiability for formulas for a class C (for
example, 2-CNF), and also uses two polynomial-time procedures Split and Simplify.
Method.

If F ∈ C then apply Π to F
else

1. Split: Transform F into formulas F1, F2, . . . , Fk.
2. Simplify: For each i = 1..k,

simplify Fi (e.g., by unit propagation)
and apply the algorithm recursively to the result.
If any of the recursive calls returns “yes”

then return “yes”
else return “no”.

The step “Split” reduces the problem to a constant number of subproblems such that
F ∈ SAT ⇐⇒ F1 ∈ SAT ∨ . . . ∨ Fk ∈ SAT.

The step “Simplify” simplifies the problem without splitting, so for a formula Fi it results in a
formula Reduce(Fi) such that Fi ∈ SAT ⇐⇒ Reduce(Fi) ∈ SAT.

Both steps are done in polynomial time.
Let us assume that Reduce(Fi) = F [A] for a certain partial assignment A, as it is the case

if we only use substitutions (as we do) and unit clause elimination (which is also a substitution),
which we will also include in the simplification procedure.

If F [A] does not contain 2-clauses, then F [A] ⊆ F , because substitutions to a 3-CNF cannot
result in new 3-clauses.

Thus in such a case we can replace F by F [A] instead of splitting it, just add this rule to the
simplification procedure as well.

Therefore, we can always

• either find a (1, 2)-splitting over a 2-clause (it corresponds to a branching number ϕ =
1.61 . . .),

• or we get a formula after the F 7→ F [A] reduction (without splitting), which removes at least
one variable, so even after splitting the reduced formula over a 3-clause we get a (2, 3, 4)-
splitting (related to the unreduced formula), with a much better branching number 1.46

4

The only exception is the very first formula, where we cannot guarantee anything better than a
(1, 2, 3)-splitting over a 3-clause, but it only influences the constant in O(. . .). Overall, we achieve
the running time Õ(ϕn).

Here is how the final algorithm looks like:

Algorithm 2 (ϕn-time algorithm for 3-SAT).

Procedure Reduce(F):
Perform Unit-clause-elimination(F)
Do the step

For every substitution A to at most three variables
If F [A] ⊆ F, then replace F by F [A]

Until it does not change the formula
Return the changed (simplified) copy of F

Main Algorithm(F):
If F is in 2-CNF then
then

apply a polynomial-time 2-SAT algorithm to F
else

Choose a 2-clause ℓ1 ∨ ℓ2 in F or (if none) a 3-clause ℓ1 ∨ ℓ2 ∨ ℓ3 in F.
For every i = 1, . . . , k

Consider an assignment Ai = {ℓi} ∪ {ℓj for all j < i}
Construct Fi = Reduce(F [Ai])
Apply the algorithm to Fi recursively

If any of the recursive calls returns “yes”
then return “yes”
else return “no”

1.5 Other tricks to extend DPLL

There is a bunch of other satisfiability-equivalent transformations. Here are some of them:

Pure literal. If ℓ ∈ F , ℓ /∈ F , then F := F [ℓ].

Subsumption. If C ⊆ D, then remove D.

Equivalent literals. If F contains ℓ ∨ ℓ′ and ℓ
′ ∨ ℓ, then eliminate ℓ′ and ℓ

′ by replacing them
with ℓ and ℓ, resp.

Blocked clause. A literal ℓ in a clause C blocks it if ∀D ∈ F (ℓ ∈ D ⇒ |C ∩D| ⩾ 2), that is, if
ℓ ∈ D, then C and D must also have at least one other pair of contrary literals.

If a clause is blocked (by any literal), then we can remove C. (It’s an easy exercise to show
that we do not add add new satisfying assignments this way.)

5

The following simple notion plays a crucial role in SAT algorithms, solvers, proof systems. It’s
first-order counterpart plays a crucial role in (first-order) automated theorem proving.

Definition 2 (Resolvent). Given x ∨ C and x ∨ D such that C ∩D = ∅, their resolvent (by
x) is C ∨ D.

It is easy to see that the resolvent of two clauses is semantically replied by their conjunction, so
it is a valid step of logical reasoning, and resolvents can be added to the formula without changing
its satisfiability.

The Davis–Putnam procedure eliminates variables one by one using the following function

Function DPx(F) // simplifies F by getting rid of x

• Add all resolvents1 by x to F.

• Remove all clauses containing x or x.

• Return F.

The simplified formula DPx(F) is satisfiable iff F is satisfiable. A satisfying assignment for F
can also be reconstructed from a satisfying assignment for DPx(F), if any.

Therefore, if we apply DPx to each variable: DPx1(DPx2(. . . (F)), we get rid of all the variables,
so we get a trivial formula False or True, and this is a correct answer about the satisfiability of
F ; a satisfying assignment can be reconstructed backwards step by step.

Remark 2. Note that DP may increase the number of clauses and that it can introduce 4-clauses
when applied to a formulas in 3-CNF. However, there are situations where it does not bring too
much harm: for example, if one of the clauses is a 2-clause, the resolvent is no longer than the
second clause; if DP is applied to a variable that occurs at most four times, then the number of
clauses does not grow, etc. However, even in such cases it can change other syntactic properties of
the formula (for example, increase the number of occurrences of variables), so it must be carefully
watched regarding its effect on the complexity. In particular, the Davis–Putnam procedure solves
SAT in potentially exponential time because of the blow-up of the number of clauses.

1.6 Making DPLL practical

So far we talked about 3-SAT only, but the bounds we proved can be easily generalized to k-
SAT. Also the same tricks, of course, work for general SAT, even if they do not lead to theoretical
worst-case upper bounds.

DPLL-type algorithms are not currently the best in theory, but they can be made very practical.
In particular, contemporary SAT solvers that use clause learning (which is a technique for adding
useful resolvents), called CDCL2 solvers (coming in the next lectures), have DPLL as their base.

1In the definition of a resolvent we require that C and D do not have a contrary pair; indeed, if they do, the
resolvent is useless, as it is trivially true.

2Conflict-Driven Clause Learning.

6

To make these algorithms even more practical, one needs to optimize the data structures.
Classically, one represents a CNF using adjacency lists:

• A clause is a list of literals.

• For every variable, there is a list of clauses where it occurs.

These are easy to program and easy to verify structures, because at every moment the formula is
described by its data structure very naturally. They are enough for theoretical results and for the
use in “proof-of-concept” solvers. However, in practice DPLL and CDCL solvers need to update
a lot of data after assigning a single variable, and it is not always worth doing it immediately,
as maybe we will backtrack soon and never look at some parts of the formula. In “lazy” data
structures certain updates are delayed until the data is used. We will discuss them when we
discuss the solvers.

2 PPZ: Random permutations
We consider variables for splitting in a certain order, for example, we tend to take variables from
the same clause. Is there a better order for a formula in k-CNF? Let us try a random order and
see what happens!

2.1 The case of a single assignment

Observation 1. Consider a uniquely satisfiable formula, that is, it has a single satisfying as-
signment A. For each variable x, there must be a clause of pattern -· · ·-+ for x, that is,
C = ℓ1 ∨ . . . ∨ ℓk−1 ∨ ℓk, for ℓk ∈ {x, x} and A[ℓ1] = . . . = A[ℓk−1] = False, A[ℓk] = True).
Indeed, otherwise if we change the value of x in A, we find one more satisfying assignment.

This clause C is called critical for x (w.r.t. A), and x is called a critical variable for C.
Then if we know the values of ℓ1, ℓ2, we can figure out the value of x, if it is to be determined

later than those of ℓ1, ℓ2.
Note that a critical clause can be critical for a specific variable only: critical clauses for two

different variables are always different.
The idea of the next algorithm is to choose the order of variables at random and hope that we

have enough variables to be determined later than the other variables in their critical clauses.

Algorithm 3 (Paturi, Pudlák, Zane).
Initialize A[1..n] by ∗.
Pick a random permutation π ∈ Sn.
For i = 1, . . . , n

If A[xπ(i)] = ∗ then
A[xπ(i)] := random({0, 1}) (G)
F := F [xπ(i) ← A[xπ(i)]]
Perform unit propagation (updating A)

If F = True then return A else return “no”

7

The probability of a correct guess at step (G) is 1/2.
Consider a formula in k-CNF. For a variable x, the chances that it is the last one (w.r.t. π)

among the variables present in a clause C, is at least 1/k. Let f be the number of values given
for free, not guessed. Let E := Ef ⩾ n · 1/k = n/k (by the linearity of expectation). Thus,
the number of such values ⩾ n/k (so the number of random guesses ⩽ n− n/k) with probability
⩾ 1/n. Indeed, assuming w.l.o.g.3 that n ≡ 0 (mod k), if the desired probability is < 1/n, then

E ⩽ n · Pr{f ⩾ n/k}+ (n/k − 1) · Pr{f < n/k} < n · 1/n+ (n/k − 1) · 1 ⩽ n/k.

The overall success probability is thus ⩾ 2−(n−n/k) ·1/n, because random guesses are, of course,
independent of the choice of permutation.

Recall that if a one-sided error algorithm has success probability ⩾ p, repeating it 1/p times
fails with probability ⩽ (1− p)1/p < 1/e.

Thus repeating our algorithm O(n · 2n−n/k) times yields a constant probability of error, and
repeating it Õ(2n−n/k) times can give us any exponentially small probability of error.

2.2 The general case

2.2.1 Boolean cube and Satisfiability Coding Lemma

It is handy to think about the 2n Boolean assignments arranged in a graph that is the 1-dimensional
“skeleton” of the n-dimensional cube {0, 1}n, where

• the assignments are the nodes,

• the edges connect the assignments that are at Hamming distance one from each other (that
is, differ in the value of exactly one variable).

Note that the distance in this graph is exactly the Hamming distance (the number of values of
variables that are different in two assignments).

011

001

000

110

111

100
x1 = 1, x2 = 0, x3 = 0

010

101

So far we managed to find a satisfying assignment for a uniquely satisfiable formula. Let us
consider the general case now. Intuitively, the more satisfying assignments we have, the easier the
problem.

3We estimate the running time up to Õ.

8

Definition 3 (neighbouring assignments and isolation). Let Ax be A with x’s value flipped
(0↔ 1). An assignment A is d-isolated if there are d variables x s.t. F [Ax] = 0.

Note that Ax is a neighbour of A in the Boolean cube.
One can consider the PPZ procedure as decoding a “compressed” version of a satisfying as-

signment (just replace the guesses by the correct values: the number of these values is potentially
much smaller than n). By performing the procedure we recover the values of the remaining values
using the clause elimination procedure.

The more isolated is a satisfying assignment, the better compression we have. We formalize it
in the following lemma.

Lemma 2 (Satisfiability Coding Lemma for k-SAT). If a satisfying assignment A is d-isolated,
then the mathematical expectation of the number of correct values needed to recover it (the num-
ber of random guesses in the PPZ algorithm) needed to recover it is ⩽ n − d/k (for a random
permutation).

Proof. If A is isolated in the direction of a variable x, then x has a critical clause C.
In total, we have d such variables, their critical clauses are different (because a critical clause

is critical for a single variable only), so x is the last in C with prob. 1/|C| ⩾ 1/k, and E#(such
variables) ⩾ d · 1/k, and thus E#(guesses) ⩽ n− d · 1/k.

We do not assume the divisibility by k any more, as d van be arbitrary, so let us do rounding.
We claim that the number of guesses is at most n − ⌊d/k⌋ with probability ⩾ 1/n. Indeed, let
us again denote by f the number of values given for free. If the probability is not as claimed,
then Ef < n · Pr{f ⩾ ⌊d/k⌋} + (⌊d/k⌋ − 1) · Pr{f < ⌊d/k⌋} < n · 1/n + (⌊d/k⌋ − 1) · 1 = ⌊d/k⌋
contradicting the assumption.

We will use this lemma to show that the error probability of the PPZ algorithm stays the
same in the general case as in the uniquely satisfiable case. We need, however, another technical
lemma that allows us to show that, in a sense, there is a compromise between the isolation of the
assignments and their number.

Define the isolation degree of an assignment A (w.r.t. formula F), δ(A) := δF (A) := d if A is
d-isolated in F .

Lemma 3 (Isolated satisfying assignments). Then
∑

A:F [A]=1

2δ(A)−n ⩾ 1, where F contains n vari-

ables.

Proof. Induction on the dimension of the Boolean cube (the number of variables). Let us prove
that if the statement is true for the dimension n− 1 (in particular, for F [x← 0] and F [x← 1]),
then it holds for F . Consider two cases:

1. If both formulas are SAT, then∑
A:F [A]=1

2δ(A)−n =
∑

A∋x:F [A]=1

2δ(A)−n +
∑

A∋x:F [A]=1

2δ(A)−n

⩾ 1
2
·

∑
B:F [x←1][B]=1

2δ...(B)−n+1 + 1
2
·

∑
C:F [x←0][C]=1

2δ...(C)−n+1
ind

⩾ 1
2
+ 1

2
= 1.

9

2. If one of the formulas is UNSAT, then for the other one (call it G), δG(A\{x, x}) = δF (A)−1,

so
∑

A:F [A]=1

2δ(A)−n =
∑

B:G[B]=1

2δG(B)−n+1
ind

⩾ 1.

2.2.2 Putting it together

Recall the algorithm we are talking about:

Algorithm 4 (Paturi, Pudlák, Zane).
Initialize A[1..n] by ∗.
Pick a random permutation π ∈ Sn.
For i = 1, . . . , n

If A[xπ(i)] = ∗ then
A[xπ(i)] := random({0, 1}) (G)
F := F [xπ(i) ← A[xπ(i)]]
Perform unit propagation (updating A)

Let S := {set of all satisfying assignments for F}.

Pr
A∈S
{success} non-intersecting

=
∑
A∈S

Pr{A is output} ⩾
∑
A∈S

1

n
· 2⌊δ(A)/k⌋−n ⩾

⩾
∑
A∈S

1

n
· 2δ(A)/k−1−n =

∑
A∈S

1

2n
· 2δ(A)/k−n =

=
1

2n
· 2n/k−n ·

∑
A∈S

2(δ(A)−n)/k ⩾ (since k
√
ε ⩾ ε for 1 ⩾ ε ⩾ 0)

⩾
1

2n
· 2n/k−n ·

∑
A∈S

2δ(A)−n ⩾ (by Lemma 3)

⩾
1

2n
· 2n/k−n. Time Õ(2n−n/k) for k-SAT, Õ(22n/3) for 3-SAT.

Remark 3. The running time of this algorithm can be improved using the following extension:

Algorithm 5 (Paturi, Pudlák, Saks, Zane).
- Add all resolvents of size at most o(log n).
- Execute PPZ.

We will not prove the improved upper bound.

Historical notes and further reading
These historical remarks are related both to this lecture and to the next one.

10

The first less-than-2n bounds for k-SAT were published in 1979–1985 independently by Evgeny
Dantsin in USSR and by Burkhard Monien and Ewald Speckenmeyer in Germany. The branching
numbers technique was suggested in mid-1990s by Oliver Kullmann and Horst Luckhardt. Among
other things, they present simple rules to compare branching numbers without computing them.
Also in late-1980s and 1990s there was a series of DPLL-type algorithms with more and more
intricate case analysis for 3-SAT culminated in particular in Kulmann’s O(1.497n)-time upper
bound. Ramamohan Paturi, Pavel Pudlák, and Francis Zane suggested their random permutations
approach in late 1990s, and their randomization approach turned out to be much easier for the
analysis than DPLL; the same authors plus Michael Saks improved it further. Local search
algorithms that employ either random or deterministic walks in the Boolean cube have been
exploited in an experimental manner by many authors in the 1990s: Bram Cohen, Henry Kautz,
Hector Levesque, David Mitchell, Bart Selman, to mention a few. The simple lower bound for them
mentioned in the lecture is due to myself. The random walk approach for 2-SAT was suggested
by Christos Papadimitriou. The random walk algorithm for 3-SAT and (k, d)-CSP in general
(described in the next lecture) was suggested by Uwe Schöning at the very end of the century. Then
it was derandomized by three independent groups (Evgeny Dantsin + Edward A. Hirsch, Andreas
Goerdt + Uwe Schöning, Ravi Kannan + Jon Kleinberg + Christos Papadimitriou + Prabhakar
Raghavan) and the summary of the somewhat similar approaches was published together. The
clause shortening approach to general SAT was suggested by Rainer Schuler in 2000s and then
derandomized by several authors; the last reduction from SAT to k-SAT was published in a
paper by Chris Calabro, Russell Impagliazzo and Ramamohan Paturi in 2006.

The respective references can be found in SAT Handbook (Handbook of Satisfiability, edited
by Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh; published by IOS Press), see
the chapter “Worst-Case Upper Bounds” and the chapter “Incomplete Algorithms”.

However, the subject is covered sufficiently in these lecture notes and there is no need to look
into the Handbook or check the references therein.

Later the approaches of random permutations and random walks were generalized in a series
of results combining the two approaches and leading to even better time bounds. Also better
derandomization results appeared. The field is still developing, so it is difficult to point to the
latest results in every direction.

The results concerning weakly exponential running time upper bounds have stimulated a new
field of Parameterized Complexity (Fixed-Parameter Tractability), which became very popular in
the new century. The Handbook also contains a chapter on the basics of this field, but it is out of
the scope for this lecture course.

11

	DPLL: Divide-and-conquer
	The first attempt. Splitting over variables from the same clause
	The second attempt. Grouping the cases in splitting over a clause
	Branching tuples: Estimating the recurrency
	The third attempt: We can always find a 2-clause
	Other tricks to extend DPLL
	Making DPLL practical

	PPZ: Random permutations
	The case of a single assignment
	The general case

	Historical notes and further reading

