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Lecture 3
In this lecture we finish studying algorithms that are able to solve k-SAT (and, to a certain
extent, SAT) faster than in 2n steps.
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1 Derandomization of PPZ

1.1 General plan

Recall the PPZ algorithm from the previous lecture:

Algorithm 1 (Paturi, Pudlák, Zane).
Initialize A[1..n] by ∗
Pick a random permutation π ∈ Sn // randomness #1
For i = 1, . . . , n

If A[xπ(i)] = ∗
Then

A[xπ(i)] := random({0, 1}) // randomness #2
F := F [xπ(i) ← A[xπ(i)]]
Perform unit clause elimination (updating A)

If F = True then answer “yes” else answer “no”

This algorithm has two sources of randomness: the permutation and the choice of the next
value. Recall that this algorithm can be viewed also as a decoding procedure for the “compressed”
assignment consisting of the random values that we pick. Our deterministic version will

• Enumerate all the permutations — but n! is too large, so we will need a smaller set σ ∈ Sn

of permutations with similar properties.

• Enumerate all the compressed assignments — but this is not that simple as we do not know
how isolated is the assignment we are decoding, so we do not know its length; so we need a
tweak.

We will deal with these two items in the two following subsections.
Ideally, we would like to see it like this (but, again, this plan will be tweaked):

Algorithm 2 (Informal derandomization plan for PPZ).
Initialize A[1..n] by ∗
For all permutations π ∈ σ ⊆ Sn

For all B ∈ {0, 1}???
Let j := 1
For i = 1, . . . , n

If A[xπ(i)] = ∗ then
A[xπ(i)] := B[j]
j := j + 1
F := F [xπ(i) ← A[xπ(i)]]
Perform unit clause elimination (updating A)
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1.2 Permutations: Small sample space

We need a polynomial-size set of permutations of n elements, σ ⊂ Sn, such that

∀s ∈ [1..n]k Pr
π∈random(σ)

{π(si) = max
1⩽j⩽k

π(sj)} = 1/k

(s is a vector of numbers of variables that can potentially occur together in a clause). Such set of
permutations with a probability measure on it is called a max-k-wise independent sample space
(the literature talks usually about the symmetric notion of min-k-wise independent space).
Small (polynomial-size) sample spaces like that are known to be constructible in polynomial time
(the probability distribution does not need to be uniform, and approximate independence, that
is, 1/k + ε(n) is also frequently sufficient). The general construction is beyond the scope of this
course, however, we give a nice construction (exact and uniform) for k = 3 below (it will be not
needed for the exam).

Min-3-wise permutations

We will give the construction for the case where n = p+1 for a prime number p (it can be
generalized to arbitrary n by noticing that there is always at least one prime between n− 1
and 2n− 5 (inclusive) because of Bertrand’s postulate).

Consider the p-element field Zp. Consider the the projective line P (Zp) over it, that is,
merge the nonzero pairs from (Zp×Zp)\{(0, 0)} using the equivalence relation (x, y) ∼ (x′, y′)
iff xy′ = x′y. There are exactly p+ 1 = n equivalence classes.

Thus a point of the projective line has the form (i · t, j · t) where t, ij ̸= 0.
For example, for p = 3 we have four points:

(0, 1) ∼ (0, 2) // (0, 1) · t
(1, 0) ∼ (2, 0) // (1, 0) · t
(1, 1) ∼ (2, 2) // (1, 1) · t
(1, 2) ∼ (2, 1) // (1, 2) · t

We will permute these classes using invertible linear transformations of Zp × Zp, that is,
functions of the form f((x, y)) = (ax+ by, cx+ dy) with ad− bc ̸= 0. There is a polynomial
number of them (namely, (p+ 1)p(p− 1)).

It is easy to check that for any two triples of the points of the projective line, there exists
exactly one transformation that maps the first triple to the second triple,

∀ (i, j, k), (i′, j′, k′) ∈ P (Zp)× P (Zp)× P (Zp) ∃!f s.t. (i, j, k) = (f(i′), f(j′), f(k′)).

So such transformations, being applied to triples coordinate-wise, permute the triples.
The situation is absolutely symmetric, in particular, for random f each of the three points

f(i), f(j), f(k) has the same chance to be the last one among them, so it is 1/3.
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1.3 Derandomizing the guesses

Now that we can find an optimal permutation, it remains to try all “compressed” assignments.
Given that we do not know how much our satisfying assignments are isolated, we choose ε ∈ (0; 1

2
)

(to be determined later) and try two possibilities:

1. There is a “low-weight” satisfying assignment containing fewer than εn values ”1”.

2. Otherwise, think about a satisfying assignment with the fewest values “1” possible. It is
isolated in all the directions where it has the value “1”, and we can assume that there are
more that εn such values. Thus, there must be an εn-isolated satisfying assignment (of
course, if the formula is satisfiable at all).

This is formalized in the following algorithm:
Algorithm 3 (PPZ, derandomized).

// Search in the ball of radius εn centered at the all-0 assignment
For each assignment A with ⩽ εn “1”s

If F [A] = True then return “yes”.

// Now if it does not help...
For all permutations in σ,

For all strings s ∈ {0, 1}n(1−ε/k)+1,
// Try to decode s...
Initialize A[1..n] by ∗
Let j := 1

For i = 1, . . . , n

If A[xπ(i)] = ∗ then
A[xπ(i)] := s[j]

j := j + 1

F := F [xπ(i) ← A[xπ(i)]]

Perform unit clause elimination on F (updating A)
If F = True then return “yes”

Return “no”

0n εn

{0, 1}n

By making use of the estimation (say, by Stirling’s formula) for the binomial coefficients, one can
check that the volume (the number of assignments) of the Hamming ball of radius ϵn is Θ̃(2H(ε)·n),
where Θ̃(. . .) is Θ(. . .) ignoring the polynomial factors.

Let us estimate the running time of the algorithm:

• The first phase of the algorithm takes time Õ(2H(ε)·n), where
H(ε) = −ε log2 ε− (1− ε) log2(1− ε) is the binary entropy function.

• The second phase takes time Õ(2n(1−ε/k)).

To optimize their sum, let us take ε such that H(ε) = 1 − ε/k. As k → ∞, it leads to a
Õ(2n(1−ck))-time algorithm for ck =

1
2k
− o( 1

k
) (computing this asymptotics is left as an exercise).
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2 What if it is not k -SAT?
Can we do better than 2n if the clauses can have arbitrary length? The following algorithm shows
that yes we can; however, the base of the exponent will depend on the formula “density”, that is,
on the ratio of the number of clauses to the number of variables.

The algorithm actually reduces the problem to k-SAT, where k is to be determined later based
on the running time bound of the k-SAT algorithm that will be used as a subroutine.

Algorithm 4 (Calabro, Impagliazzo, Paturi).
Clause-shortening (F,k,A): // A is a k-SAT algorithm

if F is in k-CNF then return A(F )
else (so there is C ∈ F s.t. |C| > k)

take distinct ℓ1, . . . , ℓk ∈ C
if Clause-shortening(F ∪ {ℓ1 ∨ . . . ∨ ℓk}) \ {C}, k,A) = “yes”

then return “yes”
elif Clause-shortening(F [ℓ1, . . . , ℓk], k,A) = “yes”

then return “yes”
else return “no”

F = G ∧ (ℓ1 ∨ . . . ∨ ℓk ∨ . . . . . . . . .)

shorten: G ∧ (ℓ1 ∨ . . . ∨ ℓk)

shorten substitute

substitute: F [ℓ1, ℓ2, . . . , ℓk]

shorten substitute

............................

The algorithm chooses any long clause C in F and examines recursively two cases:

1. One of the first k literals in C is satisfied by some satisfying assignment.

2. In all satisfying assignments all the first k literals in C are false.

For the analysis, it gives us two branches that we call “left” and “right”:

1. In the left branch we eliminate one long clause.

2. In the right branch we eliminate k variables.

This algorithm’s run corresponds to a recursion tree where the leaves are the applications of
the k-SAT algorithm.

Consider the input formula F that has n variables and m clauses. If a path goes through L
left branches and R right branches, then L ⩽ m and R ⩽ n/k. Thus the total number of paths
(root→leaf) with R right branches does not exceed

(
L+R
R

)
⩽

(
m+n/k

R

)
.

Assume that k-SAT is solvable in time Õ(2akn) by a randomized algorithm. By repeating it a
polynomial number of times we can assume that its probability of error is smaller than 2−100n2m2 ,
thus with overwhelming probability it will not err in any leaf of our branching tree.

Assume m ⩾ n/k. Since A is applied to a formula in k-CNF where at most n− kR variables
are still remaining, the total runnning time of our algorithm including the time taken by A is at
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most
n/k∑
R=0

(
m+ n/k

R

)
· timeA(m,n− kR) ⩽

n/k∑
R=0

(
m+ n/k

R

)
· 2ak(n−kR)

= 2akn ·
n/k∑
R=0

(
m+ n/k

R

)
· 2−akkR ⩽ (now use

∑N
i=0

(
N
i

)
ai = (1 + a)N)

⩽ 2akn(1 + 2−akk)m+n/k = 2akn((1 + 2−akk)2
akk

)︸ ︷︷ ︸
⩽e

2−akk(m+n/k)

⩽ 2akne2−akk(m+n/k) ⩽ 2akn+(2m log2 e)/2
akk

(as m ⩾ n/k).

Recall that PPZ solves k-SAT in time Õ(2n(1−1/k)), that is, ak ⩽ 1−1/k. Choose k = ⌈2 log2(m/n)⌉+
c, where c is a positive integer constant to be determined later, and let us show the upper bound

Õ
(
2n(1−

1
O(log(m/n)))

)
on the running time of our algorithm. Indeed,

akn+(2m log2 e)/2
akk ⩽ akn+(4m)/2akk ⩽ n

(
1− 1

k

)
+ 4m

2k−1 ⩽ n
(
1− 1

2 log2(m/n)+c
+ 1

(m/n) 2c−3

)
. (∗)

Let m > n. It is easy to see that indeed m ⩾ n/k as required before, and that1 for a large enough
constant c,

(m/n) 2c−3 − 2 log2(m/n)− c ⩾ α log2(m/n)

for certain constant α > 0, which means that2 (∗) ⩽ n
(
1− 1

O(log(m/n))

)
.

3 Randomized Local Search: another popular approach

3.1 Experimental methods

GSAT algorithm. Since the beginning of 1990s, there was a steady interest in designing heuris-
tic algorithms that use local search, that is, perform a walk in the Boolean cube changing one
variable at a time, in order to improve the current assignment and eventually reach the satisfying
assignment. The following simple greedy algorithm starting from a random assignment was sug-
gested by Bart Selman, Hector Levesque, and David Mitchell; they investigated it experimentally
with some positive results.

1Denote p = m/n. Consider f(p) = (p 2c−3 − 2 log2(p)− c)/ log2 p. We need (2c−3p− c)/log2 p ⩾ const > 2.
For p > 1, the function p/ log2(p) is decreasing until p = e (where it equals e ln 2) and is increasing afterwards

(you can check the derivative).
Suppose log2(p) ⩾ 100. Then (2c−3p− c)/log2 p ⩾ 2100+c−3/100− c/100, which is greater than 5 for all integer

c > 0.
Now assume log2(p) < 100. Take c = 100, then (2c−3p− c)/log2 p ⩾ (2c−3e ln 2 · log2 p− c)/ log2 p ⩾ 297e ln 2−

100/ log2 p > 5.
2Caution! The constant in O(. . .) is relative to n → ∞, it has nothing to do with log(m/n), it is valid for all

values of m > n (and of this positive-valued logarithm).
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Algorithm 5 (GSAT).
Input:

A formula F in CNF, integers MAXFLIPS and MAXTRIES.
Output:

A truth assignment for the variables of F , or “no”.

Repeat MAXTRIES times:

–- Pick an assignment A at random.

–- Repeat MAXFLIPS times:

–- If A satisfies F, then output A.
–- Choose a variable x in F such that Ax satisfies the maximal possible

number of clauses of F.
–- A := Ax.

Output “no”.

A lower bound for GSAT. As it happens with many other local search algorithms that try
to optimize some goal function greedily (the number of satisfied clauses in our case), they may
end up in a local maximum that is not at all the global maximum. (In practice, they even more
frequently get stuck at a large “plateau” where the goal function does not change.)

It is not difficult to show an exponential lower bound for GSAT and some other similar algo-
rithms. Namely, we will give a series of uniquely satisfiable formulas Fn for which the only chance
for GSAT to reach the satisfying assignment is to choose it or its direct neighbour initially (thus
with probability (n+ 1)/2n). Our formula Fn contains n variables and three groups of clauses (a
clause is described as a set of literals); the first and the third group are obtained using shifting
the variable numbers by 1 modulo n:

{x1, x2}
{x2, x3}
. . .

{xn, x1}

{x1, x2}

{x1, x2, . . . , xn−3, xn−2, xn−1}
{x1, x2, . . . , xn−3, xn−1, xn}
{x1, x2, . . . , xn−3, xn, xn−2}

{x2, x3, . . . , xn−2, xn−1, xn}
{x2, x3, . . . , xn−2, xn, x1}
{x2, x3, . . . , xn−2, x1, xn−1}
. . .

{xn, x1, . . . , xn−4, xn−3, xn−2}
{xn, x1, . . . , xn−4, xn−2, xn−1}
{xn, x1, . . . , xn−4, xn−1, xn−3}
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It follows from the first two groups (2-clauses) that the satisfying assignment is x1 = x2 =
. . . = xn = 1 (and it also obviously satisfies the third group).

Now look at the neighbourhood of the satisfying assignment.

• Every assignment at Hamming distance 1 from it falsifies 4 clauses.

• Every assignment at Hamming distance 2 from it falsifies 2 or 3 clauses.

• For every assignment B at distance 2, there is a direction (variable) x such that Bx falsifies
the same number of clauses as B (one can take x adjacent to exactly one of the wrong values
and not ∈ {x1, x2}). Obviously, Bx is at distance 3 from the satisfying assignment.

Thus assignments at Hamming distance 2 form an “insurmountable ring” around the satisfying
assignment: once the algorithm reaches one of them, it is forced to make the next step in the
wrong direction.

WalkSAT: a heuristic fix to the bug. The authors of GSAT suggested the following tweak
that allows the algorithm to escape local maxima — and it performed much better experimentally.
Among other heuristics, it uses random moves.

Algorithm 6 (WalkSAT, mixes greedy and random moves).

Input: F in CNF, integers MAXFLIPS and MAXTRIES, probability p.
Output: A truth assignment for the variables of F , or “no”.

Define β(A, x): the number of clauses satisfied by A but not by Ax.

Repeat MAXTRIES times:

–- Pick an assignment A at random.

–- Repeat MAXFLIPS times:

–- If A satisfies F, then output A.
–- Choose an unsatisfied C ∈ F at random.
–- If there is x in C such that β(A, x) = 0,

Then
–- choose this x

Else
–- with probability p choose x from C to minimize β(A, x) //greedy move

–- with probability 1− p choose x from C at random //random move

–- A := Ax.

Output “no”.
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3.2 Schöning’s Random Walk algorithm

Let us consider a much simplified version of WalkSAT: the algorithm that takes an unsatisfied
clause C in the current (unsatisfying) assignment A, chooses a variable from C at random, and
flips it.

Think about a specific satisfying assignment S. Certainly, at least one of the variables in C
has different values in A and S, so with probability at least 1/|C| the Hamming distance between
A and C decreases by 1 (and otherwise it increases by 1). This can be viewed as the following
random walk on a line with integer states (let k = |C|), the state number being the distance from
S:

0 1 2 · · · b−1 b b+1 · · · n−1 n

1

S

11
k 1− 1

k

Warm-up: the 2-SAT case. For the case of 2-SAT, the algorithm takes polynomial time, it
was suggested by Christos Papadimitrou. Let xk be the expectation of the number of steps needed
to reach b − 1 from b. By the linearity of expectation, xb = 1

2
· 1 + 1

2
· (1 + xb+1 + xb), that is,

xb+1 = xb +2. Even in the very unfortunate case where the initial randomly chosen assignment is
in the state n, the expectation of the number of steps to reach 0 is xn + xn−1 + . . .+ x1 = n2.

The 3-SAT case. In this case we do care about the state where the initial assignment lands.
Also we limit the length of the random walk.

Algorithm 7 (Schöning, 3-SAT version).
Input: F in 3-CNF with n variables,
Output: A truth assignment for the variables of F , or “not found”.

–- Pick an assignment A uniformly at random.

–- Repeat at most n times:

–- If A satisfies F, then output A.

–- Choose an unsatisfied C ∈ F.

–- Choose a variable x from C at random.

–- A := Ax.

–- Output “not found”.
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Assume w.l.o.g. that 3 divides n. Let us hope that we land in the state n/3 and compute two
probabilities: to land in this state, and to reach 0 provided we land in n/3.

The first probability is
(

n
n/3

)
/2n.

The second probability can be computed as the number of paths (patterns of going in the
right and in the wrong direction at each step) on the 2-dimensional integer grid that correspond
to walks from n/3 to 0, where

• the horizonal axis: time, that is, the number of steps, going from 0 to n,

• the vertical axis: distance from S, going from 0 to n,

• the path starts at (0, n/3) and ends at (n, 0),

• the path does not intersect the horizontal axis,

• every edge goes either northeast (i, j)→ (i+1, j+1) (wrong direction) or southeast (i, j)→
(i+ 1, j − 1) (right direction),

• the last edge is going, of course, southeast (n− 1, 1)→ (n, 0).

Let P be the number of northeast edges and Q is the number of southeast edges; P +Q = n and
P − Q = n/3. It is not difficult to see (some pictures are in the slides) that the number of such
paths is (

P +Q− 1

P − 1

)
−

(
P +Q− 1

P

)
=

P −Q

P +Q

(
P +Q

P

)
=

1

3

(
n

2n/3

)
.

The probability for such a path to happen can be estimated as (1/3)P (2/3)Q = (1/3)2n/3(2/3)n/3.
Overall, the chances to come from n/3 to 0 are 1

3

(
n

2n/3

)
· (1/3)2n/3(2/3)n/3, and thus the overall

success probability of the algorithm is at least(
n

n/3

)
2n
· 1
3

(
n

2n/3

)
· 1

32n/3
2n/3

3n/3
=

1

3
·
(

n

n/3

)2

· 1

3n · 22n/3
= Ω̃

((
22H(1/3)

3 · 22/3

)n)
.

The base of this exponent is
32/3 · (3/2)4/3

3 · 22/3
=

3

4
.

Repeating the procedure Õ((4/3)n) times guarantees that we find a satisfying assignment with
probability at least 1/2.

This algorithm can be easily generalized to k-SAT achieving the running time Õ((2 − 2
k
)n)

and for CSP achieving the running time Õ
((
|D|(1− 1

k
)
)n) for domain D and relation arity k.

3.3 Derandomization: Deterministic local search

Schöning’s algorithm hopes to choose the initial assignment in the Hamming ball of radius n/3
centered in a satisfying assignment and then performs a random walk. Let us do both things
deterministically.
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The derandomized algorithm.

Consider a set of Hamming balls of a certain radius R covering our
search space (this is called a covering code or radius R and length
n). To start in a good position, try centers of these balls.

{0, 1}n

Let 0 < ρ < 1/2. For every n, we can efficiently construct a covering code of length n, radius
at most ρn, and cardinality Õ(2(1−H(ρ))n). (We discuss the constructions below.)

Start the search in a center of the ball. Let us talk about k-SAT. When performing our local
search within a ball, we

• take an unsatisfied clause ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓt and try all t possibilities to flip a variable in it
thus developing a recursion tree with ⩽ k children of every node,

• make substitutions to the formula (as we never come back: contrary to the randomized
version, we explore all possibilities and thus do not need to fix errors), so our search is
somewhat similar to the DPLL algorithm,

• stop at depth R.
(ℓ1∨ℓ2∨ℓ3)∧G

A={ℓ1,ℓ2,ℓ3,...}

G[ℓ1], Aℓ1 G[ℓ2], Aℓ2 G[ℓ3], Aℓ3

Thus our tree contains at most kR leaves and the running time of the search in one ball is
Õ(kR). Let R = n/(k + 1). Then the overall running time of the algorithm is at most Õ of

2(1−H(1/(k+1)))n · kn/(k+1)

= 2(1−log(k+1)/(k+1)+(1−1/(k+1)) log(1−1/(k+1)))n · 2n log k/(k+1)

= 2(1−log(k+1)/(k+1)+(k/(k+1)) log(k/(k+1)))n · 2n log k/(k+1)

= 2n(1−log(k+1)/(k+1)+(k/(k+1)) log k−(k/(k+1)) log(k+1))+log k/(k+1))

= 2n(1+log k−log(k+1)) = (2− 2
k+1

)n .

How to construct a covering code of size 2(1−H(r/n))n? First of all, let us check that the
required code exists. (This fact, and more combinatorial facts about covering codes can be found
in the book G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein. Covering Codes, volume 54 of
Mathematical Library. Elsevier, 1997.)

Let δ(A,B) denote the Hamming distance between A and B, and let V (d, r) = |{A : δ(A, 0⃗) ⩽
r}| = (2H(r/d)d) be the volume of a ball of radius r.
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Lemma 1. There exists a code of length d, radius at most r, and size ⩽ ⌈d · 2d/V (d, r)⌉.

Proof. We use the probabilistic method. Choose d · 2d/V (d, r) random strings ∈ {0, 1}d. Let
a ∈ {0, 1}d. Then Pr

b∈U({0,1}d)
{a is in the ball centered at b} ⩾ V (d, r)/2d.

The probability that a misses all our balls is
(
1− V (d, r)/2d

)d·2d/V (n,r)
⩽ e−d.

The problem is that a code is a huge subset of {0, 1}n, and it is too difficult even to verify
properties of such a set that involve distances to all possible assignments.

The solution is to construct a covering code S for small length d and take a direct product of
such codes, that is,

S × S × . . .× S︸ ︷︷ ︸
n/d

= {w1w2 . . . wn/d : wi ∈ S}.

(We identify a vector (a1, a2, . . . , at) ∈ {0, 1}t with a bit string a1a2 · · · at.)

For example, by taking a direct product of many copies of the code {00000, 01010, 10101}00000
01010
10101

×
00000
01010
10101

× · · · ×
00000
01010
10101


we will get a code like 

0000000000 . . . 00000
0000001010 . . . 01010
1010100000 . . . 01010

et cetera

 .

It is easy to see that relative to n, the parameters of the direct product code are the same (if
all the numbers below are magically integers!!!) as for the small code.

Let d be the length of the small code, ρd be its radius, and the cardinality is 2αd. Then
the length of the product is n/d × d = n, the radius is n/d · ρd = ρn, and the cardinality is(
2αd

)n/d
= 2αn.

There are two approaches to find the small code:

• d = O(1), then rounding errors add some ε (depending on the constant in O(. . .)) to the
exponent.

• d = n/10, then to construct the code we can use a greedy approximation algorithm for Set
Cover. The universum here is U = {0, 1}d, and the sets S ⊂ U that we can choose are all the
balls of radius ρd. At each step the algorithm adds a ball that covers as many yet-uncovered
elements of U as possible. We can recalculate these numbers for all the 2d balls at every
step at the cost of Õ(2d) per ball; given that the number of iterations is at most 2d, this
greedy algorithm constructs a code in time Õ(23d), which for d = n/10 is even better than
(2 − 2/(k + 1))n taken by the main algorithm. The cardinality of the code is within a d
factor of the optimal value.
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4 A note on quantum algorithms
(This is not for the exam.)

Can quantum algorithms solve k-SAT faster?
Grover’s quantum algorithm speeds up the search for the following problem that has the

complexity Ω(2n) in both the deterministic and randomized settings:

Problem (black-box database search):
For any black-box f : S → {0, 1},
finds x ∈ S s.t. f(x) = 1 using O(

√
|S|) queries to f .

This immediately gives us an Õ(2
√
n)-time algorithm for SAT.

Once we convert one of our improved algorithms into such f with smaller-than-2n search
space S, we will get an even better algorithm. For many known k-SAT algorithms this is
possible.

On the negative side, this (black-box) way quantum algorithms could not help more than
we already see: O(

√
|S|) is also the lower bound on the number of queries even in the

quantum setting.

5 Takeaway (the summary of two lectures)
We studied three approaches to solving k-SAT faster than 2n:

• the DPLL split-and-simplify approach,

• the PPZ random permutations approach,

• Schöning’s random walk algorithm.

We also studied the clause-shortening approach that reduces SAT to k-SAT and gives a less-
than-2n bound (though not contantn).

There is a number of results combining and improving these algorithms resulting in both
randomized and deterministic algorithms with better and better running time bounds. How far
can we go? Can we solve 3-SAT in time 1.3n? 1.2n? (1 + ε)n? What about the asymptotics of
this constant w.r.t. k for k-SAT? What about other versions of SAT? In the next lecture we will
at least connect such problems to each other.

Historical notes and further reading
See Lecture 2.
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