
Boolean Satisfiability
Lecture 4: The Exponential-Time Hypothesis

Edward A. Hirsch∗

January 22, 2024

Lecture 4
In this lecture we address three questions:

• How far can we push the exponent for 3-SAT? 1.3n? 2n/5? 2n/100?. . .

• How do such exponents for k-SAT behave? What is the asymptotics as k goes to ∞?

• How do such exponents for other versions of SAT behave? What are the relations between them?

Contents
1 The Exponential-Time Hypothesis and specific exponents 2

1.1 Parameterized problems and ETH . 2
1.2 So many exponents! . 3

2 Subexponential reducibilities 4
2.1 SERF reductions. 4
2.2 SERF-completeness . 5

3 Sparsification 8
3.1 The sparsification procedure . 8
3.2 Relating s∞ to sdens.∞ . 9

4 Trading the size of clauses for the number of variables 10

5 Isolation 12

6 Takeaway 13

Historical notes and further reading 13

∗Ariel University, http://edwardahirsch.github.io/edwardahirsch

1

http://edwardahirsch.github.io/edwardahirsch

1 The Exponential-Time Hypothesis and specific exponents
Given that better and better 3-SAT algorithms appear, a natural question is: can we push this
exponent further and further, or is there some limit where we will stop?

Informally, The Exponential-Time Hypothesis says — yes, we will stop. To formulate it more
precisely, let us introduce parameterized NP problems (the classical NP class is not suitable here
as we are talking about exponents w.r.t. some parameter, say, the number of variables, and not
w.r.t. the input bit-size).

1.1 Parameterized problems and ETH

Definition 1 (Parameterized NP problems). Consider L ∈ NP, that is, L is defined by some
polynomial-time computable polynomially bounded relation L such that x ∈ L ⇐⇒ ∃yR(x, y).
A parameterized problem (L, q) consists of L and a polynomial-time computable parameter
p : {0, 1}∗ → N ∪ {0} that bounds the size of the shortest solution (according to R):

x ∈ L ⇐⇒ ∃y(|y| ⩽ q(x) ∧ R(x, y)).

Example 1 (Parameterized problems).

• (k-SAT, n), where n is the number of variables,

• (k-SAT,m), where m is the number of clauses.

Remark 1. Caution! This is not the same notion as in the field of Parameterized Complexity.

Definition 2 (Subexponential-time decidable problems, SUBEXP). We say that a pa-
rameterized problem (L, q) ∈ SUBEXP if for every positive integer t, the problem x ∈ L is
decidable in time Õ(2q(x)/t).

Remark 2. Note that we are talking here about a series of algorithms, one for each t. It means that,
for example, the constants and polynomials in Õ may be different for different values of t. (Think
about the running time 2n2n, 22n22n/2, 222n42n/4, etc.) Also the design of each algorithm may be
unique (it is designed by a mathematician), and we cannot provide such a machine description
algorithmically, given t.

Alternatively, we could formulate SUBEXP instead as “for every small positive δ = 1/t, there
is an algorithm Aδ solving (L, q) in time Õ(2δq(x)).

An exponential time hypothesis for a problem (L, q) says that (L, q) /∈ SUBEXP.
The Exponential-Time Hypothesis, ETH is (3-SAT, n) /∈ SUBEXP , that is, there is

t∗ ∈ N such that we will never be able to solve 3-SAT in randomized time Õ(2n/t) for t > t∗.
Note that ETH ⇒ P ̸= NP, but the inverse is not necessarily true.

2

1.2 So many exponents!

So what are our limits of improvement? If we believe in ETH, we can introduce notation for this,
that is, for a constant δ appearing in the exponent 2δn, and we can do this for various problems.
(If we don’t believe in ETH, then δ is simply zero.)

We will be using randomized one-sided bounded-error algorithms as our model of computation.

Definition 3. For a time-constructible1 function τ , L ∈ RTime[τ(n)] if there is a randomized
algorithm A that stops in time O(c|x|c · τ(n) + c) for a certain constant c. For every input x,

x /∈ L ⇒ A(x) = 0,

x ∈ L ⇒ Pr{A(x) = 1} ⩾
1

2
,

This is just a “not-necessary-polynomial-time analogue” of RP.

The exponents for k-SAT. We can now define the exponent for k-SAT:

sk = inf{δ ⩾ 0 |k-SAT ∈ RTime[2δn]},

Note that we take the infimum, because the existence of a limit is not guaranteed. Now ETH can
be reformulated as ETH : s3 > 0.

Where do these constants go when k → ∞? Define

s∞ = lim
k→∞

sk.

Recall that SAT is decidable in time Õ(2n(1−1/O(log(m/n)))), but currently we do not know
a Õ(2(1−1/const)n)-time algorithm for it. Strong Exponential-Time Hypothesis states that we
will never know such an efficient algorithm and, moreover, even our k-SAT algorithms are doomed
to become closer and closer to 2n-time as k grows: SETH : s∞ = 1.

Other versions of SAT. For f ∈ N, problems SAT-f and k-SAT-f are defined as subproblems
limited to formulas such that the frequency (the number of occurrences) of each variable is bounded
by f . (This was not formulated in the lecture, but it is used in these lecture notes for the ease
of presentation.) For example, an instance of 3-SAT-3 is a 3-CNF that contains at most three
occurrences of every variable.

If the number of occurrences of every variable is bounded by a constant, then, of course, the
number clauses m is bounded by a linear function in n. (We call such formulas sparse, and we
call the ratio m/n the density of a formula.)

1That is, one can compute τ(n) within time O(τ(n)) on input 1n. This is a standard thing when one defines a
complexity class.

3

Define the following constants:

sfreq.f
k = inf{δ ⩾ 0 |k-SAT-f ∈ RTime[2δn]},

sdens.d
k = inf{δ ⩾ 0 |k-SAT for CNFs with at most dn clauses ∈ RTime[2δn]},
sfreq.f = inf{δ ⩾ 0 |SAT-f ∈ RTime[2δn]},
sdens.d = inf{δ ⩾ 0 |SAT for CNFs with at most dn clauses ∈ RTime[2δn]},

σk = inf{δ ⩾ 0 |Unique k-SAT ∈ RTime[2δn]},

Define their limits:

sfreq.∞ = lim
f→∞

sfreq.f ,

sdens.∞ = lim
d→∞

sdens.d,

σ∞ = lim
k→∞

σk.

How are all these constants related to each other?

2 Subexponential reducibilities
In order to relate the complexities of parameterized problems, and to do it up to an arbitrary
subexponential speedup, we need a different type of reductions than just polynomial-time reduc-
tions.

2.1 SERF reductions.

Recall that an oracle Turing machine T • has a special “oracle” state where it queries some black-
box (oracle) function (let us call it C) about some string z (in particular, C may be a Boolean
function, that is, a language). The query is answered by C in a single step, by providing T with
C(z), so it almost does not waste the time.

When we use T • with a specific C, we write T C, and when we have none specified, we write
just T •.

Note that C can be replaced by some Turing machine M computing C, and then M can used
as a subroutine (so the running time of the combined machine TM will be timeT (x) plus the sum
of all the running times of M on the queries asked by T when running on input x).

Definition 4 (Subexponential reduction family, SERF). For two parameterized NP prob-
lems, (A, p) and (B, q), a subexponential reduction family, SERF, from (A, p) to (B, q) is a series
{T •

t }t∈N of oracle Turing machines such that

• TB
t (F) solves the problem F

?
∈A in time Õ(2p(F)/t),

• it asks the oracle about G
?
∈B with q(G) = O(p(F)) and |G| = |F |O(1).

4

Why do we have many Turing machines and not just one? Because we want SUBEXP to be
closed under SERF reductions.

In order for the reductions to be useful, it is desirable that

• they are transitive (that is, a composition of two SERFs is a SERF) — an easy exercise,

• the class SUBEXP is closed under them, this is also easy, but let us check it now.

Lemma 1. If (B, q) ∈ SUBEXP and (A, p) reduces by SERF to (B, q), then (A, p) ∈ SUBEXP
as well.

Proof. Since (B, q) ∈ SUBEXP, for every s, there is an Õ(2q(G)/s)-time machine Ms solving
(B, q). Since we have a SERF-reduction, for each t, we have T •

t as in the definition.

We prove that for each t′, we can solve F
?
∈ A in time Õ(2p(F)/t). The algorithm is obvious:

Algorithm A(F, t′):
–- Run the combined machine TMs

t (F) using Ms as a subroutine.

The questions are: what t are we using for T , and what s are we using for MB,s.
By definition, T queries its oracle about Gi’s with q(Gi) ⩽ cp(F) + c for some constant c ⩾ 0.

Let t = 2t′, s = 4ct′.
Since constant-parameter queries can be answered in polynomial time and thus we can assume

p(F) ⩾ 1, the total time running time of A, up to a polynomial factor (Õ(. . .)), does not exceed

2p(F)/t+
∑
i

2q(Gi)/s ⩽ 2p(F)/t ·max
i

2q(Gi)/s ⩽ 2p(F)/t ·2(cp(F)+c)/s ⩽ 2p(F)/(2t′) ·2p(F)/(2t′) ⩽ 2p(F)/t′ .

To have a specific interesting question about SERF, ask

Does (3-SAT, n) SERF-reduce to (k-SAT,m)?

Indeed, (k-SAT,m) could be an easier problem: typically m ⩾ n, and indeed Õ(am)-time al-
gorithms exist for it for better a than we currently have for (k-SAT, n). We will address this
question in Section 3.

2.2 SERF-completeness

Do we have complete problems under SERF reductions? In order to speak about it, we need to
tell for what class they are complete (and then provide a complete problem — no surprise that it
will be (3-SAT, n)).

We will prove that it is complete for a parameterized version of SNP. The material of this
subsection is indeed difficult for non-logicians and is not needed for the exam .

5

Parameterized SNP and completeness

Definition 5 (parameterized version of SNP). (L, q) ∈ SNP if L can be defined as

(R1, . . . , Ru) ∈ L ⇐⇒ ∃f1, . . . , fs ∀i1, . . . , it Φ(i1, . . . , it),

where

• fj’s and Rj’s are logical relations (arity kj) over a finite domain [1..d],

• ij ∈ [1..d],

• formula Φ applies fj’s and Rj’s to ij’s.

The parameter q is the total bit-size of fj’s, that is,
∑

j d
kj .

Theorem 1. (k-SAT, n) is SERF-complete for SNP.

Proof. 1. To show (k-SAT, n) is in SNP, let us describe how do we represent (k-SAT, n)
in terms of SNP.

• L = k-SAT, parameter n (the number of variables);

• i1, . . . , it ∈ [1..n], these are counters for variables indices,

• input relations Ri: clauses incidence, such as
R+−+−−(i1, i2, i3, i4, i5) = True ⇐⇒ (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ xi5) ∈ F ;

• solution relation f (just unary!): a satisfying assignment, such as
f(1) = True, f(2) = False,. . . , f(n) = False;
note that we need exactly n bits (our parameter) to represent it;

• define f+(i) = f(i) and f−(i) = f(i) (this is just a notation);

• formula Φ(i1, . . . , it):

∃ assignment f ∀ indices i1, . . . , it ∈ [1..n]∧
s1,...,st∈{+,−}

(Rs1,...,st(i1, . . . , it) ⇒ (f s1(i1) ∨ f s2(i2) ∨ . . . ∨ f st(it)))

That is, if R says that a clause of this type with these variables is present in the
formula, then we must satisfy it using f .

6

Example 2. Classical form of a 2-CNF:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x1 ∨ x3) ∧ (x3 ∨ x2)

SNP input relations:

R++(i1, i2) : False

R+−(i1, i2) : if i1 = 1 and i2 = 2 then True else False

R−+(i1, i2) : if i1 = 1 and i2 = 3 then True else False

R−−(i1, i2) : if (i1 = 1 and i2 = 3) or (i1 = 3 and i3 = 2) then True else False

SNP solution relations:
just one, an assignment f : {1, 2, 3} → {False, True}.
SNP Formula Φ:

∃ assignment f : {1, 2, 3} → {False, True}
∀ indices i1, i2 ∈ {1, 2, 3}(

R+,+(i1, i2) ⇒ (f(i1) ∨ f(i2))
)
∧ // nothing(

R−,+(i1, i2) ⇒ (f(i1) ∨ f(i2))
)
∧ // (¬x1 ∨ x3)(

R+,−(i1, i2) ⇒ (f(i1) ∨ f(i2))
)
∧ // (x1 ∨ ¬x2)(

R−,−(i1, i2) ⇒ (f(i1) ∨ f(i2))
)

// (x1 ∨ x3), (x3 ∨ x2)

2. We now show that every SNP problem is SERF-reducible to (k-SAT, n). Take an SNP
problem from the definition, and

• introduce d t Boolean variables for fj(i1, . . . , it), such as variable x10; 1,8,5 for the ex-
pression f10(1, 8, 5).

• let k be the number of occurrences of fj’s in Φ (note that Φ is a fixed formula, so it
has a constant size),

• for specific i1, i2, . . ., we can compute Rj’s (for specific arguments, they are Boolean
constants!) and write Φ as k-CNF Φ′

i1,i2...
of ⩽ 2k clauses involving our Boolean

variables,

• instead of the original
∀i1, i2 . . .Φ(i1, i2, . . .),

write ∧
i1,i2...∈[1..d]

Φ′
i1,i2,...

.

Alternatively, write the k-SAT instance directly using assignment f : [1..d t] → {False, True} and
specify the clauses of Φ′ as we did in showing (k-SAT, n) ∈ SNP.

7

3 Sparsification
In order to relate the exponents for k-SAT and for linear-size SAT (in particular, to show that
s∞ ⩽ sdens.∞), we provide a subexponential reduction that shortens formulas (makes them sparse).
We will provide a reduction in the other direction as well.

3.1 The sparsification procedure

Recall the Clause Shortening algorithm from the previous lecture.

F = G ∧ (ℓ1 ∨ . . . ∨ ℓk ∨)

shorten: G ∧ (ℓ1 ∨ . . . ∨ ℓk)

shorten substitute

substitute: F [ℓ1, ℓ2, . . . , ℓk]

shorten substitute

What if there are many clauses containing (ℓ1 ∨ . . . ∨ ℓk)? Then we get rid of all of them in
the left branch simultaneously by the subsumption rule! This is exactly our goal now (instead of
clause shortening): to get rid of many clauses without doing much work.

We thus cut a “weak sunflower” into pieces (see the picture below: we leave the heart H in
one branch, and we leave the petals in the other branch). This terminology is motivated by the
somewhat similarly looking Erdös–Rado sunflower lemma.

What if there are no or very few clauses that contain the same sub-clause? Perhaps, it means
that there are only a few clauses left (this can be proved rigorously, but first think about k = 1:
then we are talking about the number of occurrences of a literal).

This intuition leads to the following procedure.

Algorithm 1 (The sparsification procedure).

Input: k-CNF formula F , small ε.

Output: linear-size k-CNF formulas F1, . . . , FL including a satisfiable formula iff F is satisfiable.

Parameters: integers θi.

1. For c = 1, . . . , n // the shorter, the better
For h = c, . . . , 1 // the larger, the better

If F contains c-clauses C1, . . . , Cd (d ⩾ θc−h) such that |
⋂d

i=1 Ci| = h

Then let H =
⋂d

i=1Ci and proceed to step 2
If nothing is found, then print F and exit.

2. Make a recursive call for F \ {C1, . . . , Cd} ∪ {H}.

3. Make a recursive call for F [H].

H

8

Every printed formula contains at most (θc−1 − 1) · 2n c-clauses (otherwise, there would be a
literal that occurs in θc−1 c-clauses, and the formula would not be printed). In total, every literal
occurs in at most

∑k
c=1(θc−1 − 1) clauses, and there are at most

∑k
c=1(θc−1 − 1) · 2n clauses in the

formula.
We did not say what are the parameters θi. In fact, in order to show that the number of printed

formulas is at most 2εn one can use θi = O

((
k2

ε
log k

ε

)i+1
)

when k → ∞. This is a technical

combinatorial statement that we do not prove in this course.
Let ck,ε := (k/ε)3k. Given such θi’s, the number of occurrences of any literal is at most

k∑
c=1

(θc−1 − 1) ⩽
k∑

c=1

(
k2

ε
log

k

ε

)c
⩽ ck,ε,

and the number of clauses is O(ck,εn).
Now, if we believe that the number of formulas is bounded by 2εn, then we can design a SERF

reduction by querying the oracle instead of printing the formulas, and returning “yes” if for some
formula the oracle answered “yes”: for given t, let ε = 1/t, then the running time of this reduction
is Õ(#leaves), and the queries have the number of clauses at most ck,εn.

Repeating what we said earlier about SERF reductions, we see now that given an Õ(2m/s)-time
k-SAT algorithm, for every t′, we can solve k-SAT in time Õ(2n/t′): taking ε = 1/t, s = (ε+ck,ε)t

′

we get the running time Õ(2εn · 2ck,εn/s) = Õ(2n/t
′
).

3.2 Relating s∞ to sdens.∞

The sparsification procedure gives us

sk ⩽ s
freq.2((k/ε)3k)
k + ε ⩽ sfreq.2((k/ε)3k) + ε.

Let ε = 1/k and let k → ∞, then we get

s∞ ⩽ sfreq.∞ ⩽ sdens.∞

(the last inequality is due to the fact that the number of clauses does not exceed the number of
variables multiplied by the frequency bound).

What about the opposite inequality?

Recall that the Clause Shortening SAT algorithm runs in time

Õ(2ckn+4m/2ckk

),

where ck is such that we can solve k-SAT in time Õ(2ckn)

By the definition of sk, we can solve k-SAT in time Õ(2(sk+ε)n)-time (where ε is here because
we take the infimum in the definition), so ck = sk + ε.

9

sdens.d ⩽ sk + ε+
4d

2k(sk+ε)
⩽
ε→0

sk +
4d

2ksk
.

Take k = k(d) growing fast enough for 4d
2ksk

⩽ s∞ − sk, and take d → ∞; then we get

sdens.∞ ⩽ s∞.

The only problem is that we assumed here that s∞−sk > 0 (otherwise how do we define k(d)?).
This is the main result of Section 4: we show that s∞− sk > 0 and even show the asymptotics for
this difference.

4 Trading the size of clauses for the number of variables
In this chapter we prove that the sequence sk strictly increases infinitely often. We can even give
some bounds on how much it increases. This is shown in the proof of the following theorem.

Note that the proof of this theorem will not be asked as a theory question during the
final exam, but there is a homework problem related to it, and the intuition acquired from studying
this proof may be useful as well.

Theorem 2. sk ⩽ (1− Ω(k−1))s∞.

Proof (Sketch, some details are left as exercises).

1. The Unique-k-SAT case.

(a). Sparsification. We start with applying the sparsification procedure to ensure that each
variable occurs at most c times, where c is a constant. (It is clear that this procedure does not
add more satisfying assignments.)

(b). Counting forced variables in a chosen subset. Recall from Lectures 2 and 3 that for a d-
isolated assignment and a random order of variables the expected number of variables that the
IPZ algorithm gets for free by unit clause elimination (let us call them forced variables) is at
least n/d, and that we can construct a small permutation space such that one of the permutations
guarantees that.

Consider the unique satisfying assignment S. Let us do a somewhat similar thing: split the
variables into two non-intersecting sets {x1, . . . , xn} = V ⊔ W , where variables in V are set to
their proper values under S, and we hope that many variables in W are forced by this. Select each
variable for W at random with probability 1/k. For each variable x that has a critical clause of
size k, the chances that x is forced are 1

k
· (1− 1/k)k−1 ⩾ 1/(k · e) (this is the probability that x is

selected for W and all other variables in its critical clause are selected for V). The expectation of
the number of such variables is thus at least n/(k · e). We can derandomize this procedure using
a small sample space similarly to how we did for the corresponding part of the PPZ algorithm, so
from now on let us assume that our variables are split into V and W so that W contains at least
n/(k · e) forced variables.

10

(c). Expressing the fact that x is forced using a DNF formula. Let us write the proposition that
x is forced (by the assignment S) as a Boolean formula Gx. Let us enumerate all the possibilities
and connect them by the disjunction sign. Every such case (possibility) is described by the term
ℓ1 ∧ . . . ∧ ℓs, where there is an x-critical clause of the form (ℓ1 ∨ . . . ∨ ℓs ∨ x) or (ℓ1 ∨ . . . ∨ ℓs ∨ x)
and the corresponding variables belong to V (note that S[ℓ1] = . . . = S[ℓs] = 0).

Likewise, define the proposition Gv
x saying that x is forced to the value v by taking the dis-

junctions of the terms corresponding only to the clauses that force x to this specific value v.
Note that if x is forced, then literally Gx = G0

x ∨ G1
x. Note also that these formulas contain at

most c(k − 1) variables as there at at most c clauses (critical or not) containing x.

(d). Getting rid of forced variables. Our goal is to express forced variables via other variables and
thus get rid of them, reducing the number of variables in the formula. The pay for it will be the
increase in the size of clauses, we will get a k′-CNF out of k-CNF. We will express forced variables
in W and rename the remaining variables in W .

First of all, split W = W1⊔. . .⊔Wp into subsets of a constant size g to be determined later. For
each subset Wi, guess the number fi of forced variables in Wi (we will enumerate all the relevant
integer vectors (f1, . . . , fp)).

Let us work with specific Wi. Let Yi be the set of fresh new variables yi1 , yi1+1, . . . , yi1+(g−fi)

where i1 =
∑

i′<i(g−f ′
i)+1. (We simply took variables y1, y2, . . . and distributed them to different

Yi’s based on the information about fi.) We will use these variables for renaming unforced variables
of W . Note that if we rename xj to yj′ in the case it is unforced, then adding a CNF representation
of

xj ⇐⇒ G1
xj

∨ (G0
xj

∧ yj′)

to F does not change its satisfiability. However, we do not know a priori which variables are
unforced and so we have to figure out j′. For this, we count the number of unforced variables z
preceding xj in Wi using the formulas Gz for them, so let

βj := yi1+q, if exactly q − 1 of the formulas Gz are true.

This is a Boolean function on a constant number of variables, namely, k′ ⩽ ckg, and so it can be
expressed as a k′-CNF (as well as a k′-DNF) with at most 2k′ clauses (respectively, terms). Define

Ψj := G1
xj

∨ (G0
xj

∧ βj)

so that Ψj defines a formula that returns the correct value for xj if it is forced, and returns the
variable yj′ otherwise.

We are ready to replace xj by Ψj, so let Ff⃗ be F after we substitute all variables in W this
way. What is the maximum clause size after this substitution? (We need to rewrite this formula
as a CNF.) At most k ·k′. Why the index f⃗? Because we do not know what are the fi’s, and these
numbers are used in the definition of Ψj (what is i1 otherwise?!). Thus we consider all integer
vectors f⃗ = (f1, . . . , fp) such that

∑p
i=1 fi ⩾ n/(k · e) as we know that the number of forced

variables is at least n/(k · e). We thus ask the oracle about all these formulas Ff⃗ . How many of
them are there, that is, how many vectors f⃗? It is easy to count: at most (g + 1)n/g. And this is

11

where we choose g: if we choose it large enough (but still a constant!) so that log2(g + 1) ⩽ εg,
then (g + 1)n/g ⩽ 2εn. All these formulas are k′′-CNF for a constant k′′, and they are larger than
F at most by a constant factor.

And, yes, it contains only n(1 − 1/(k · e)) variables, so the running time of a Unique-k′′-SAT
algorithm (designed for our specific ε) on it will be Õ(2(σk′′+ε)(1−1/(k·e))n); given that we have only
2εn formulas to ask it about, we get σk ⩽ σk′′(1− 1/(k · e)) ⩽ σ∞(1− 1/(k · e)).

2. The general k-SAT case.

Recall the corresponding trick in PPZ. Let δ > 0 (a constant) be small enough, so that the number
of assignments of weight at most δn will be small enough (see below).

After checking these assignments, we can assume that all satisfying assignments are of weight
at least δn, and so one of them (the “lightest” one, call it S∗) is δn-isolated.

Proceed as in the uniquely satisfiable case (but now we keep in mind the assignment S∗ when
defining what is a “forced” variable). The number of forced variables is now δn/(k ·e)), so k′′ may
change but will still be a constant.

The first phase of this algorithm takes time Õ(2(sk′′/2)·n), and the second phase produces at
most 2εn polynomial-size formulas in k′′-CNF and their satisfiability will be checked using a k′′-SAT
algorithm in the total time Õ(2(sk′′+ε)(1−δ/(k·e))n+εn). Thus sk ⩽ sk′′(1− δ/(k · e)).

It remains to compute δ using the volume of a Hamming ball of radius δn and the requirement
that the gain sk′′ · δ/(k · e) dominates the extra H(δ) (ideally, by Ω(1

k
)):

sk′′ · δ/(k · e) > H(δ).

Then δ can be computed from sk′′ . We estimated a similar quantity in Problem HW1.4. An
accurate calculation showing that sk ⩽ (1− Ω(1

k
))s∞ (as claimed) is left as an exercise.

5 Isolation
One other setting is Unique k-SAT. We defined the constants σk and their limit σ∞ for this
problem. Again, it looks like this is an easier problem, but yet the limit is the same as for the
general case of k-SAT.

Lemma 2 (Isolation Lemma). ∀k ∀ε ∈ (0, 1
4
) sk ⩽ σk′ +O(H(ε)), where k′ = max{k, 1

ε
ln 2

ε
}.

Corollary 1. For ε = 2 ln k
k

the lemma gives sk ⩽ σk +O(ln
2 k
k

). Thus s∞ = σ∞.

12

We only give some ideas about the reduction that is used for proving Lemma 2 (of course,
not for the exam). It consists of two stages.

Isolation procedure for k-CNF

Phase 1. Concentration.
Concentrate the satisfying assignments in a ball of radius εn.

How?

Let k′ = max{k, 1
ε
ln 2

ε
} and N = O(n).

Add N length-k′ random xors (hyperplanes)
⊕
i∈R

aR,ixi = bR,

where R is a random subset of variables of size k′; take aR,i, bR ∈ {0, 1} at random.

Phase 2. Isolation within a ball.

1. Guess random S ⊆ [1..n]: the set of 2εn variables that still have different values in
different satisfying assignments.

2. Guess an assignment for variables in S to make the satisfying assignment unique.

The proof that this reduction has a good probability to output a uniquely satisfiable formula,
is non-trivial, and we do not give it in this course. An interested reader can find the details in
[CIKP03].

6 Takeaway
We learned about ETH and SETH, which are common conjectures found in the literature.

We learned that many exponents go to the same limit, as the size of clauses or the density
goes to the infinity:

s∞ = σ∞ = sfreq.∞ = sdens.∞.

(And SETH states that this limit is 1, that is, the complexity is of the order 2n.)
We learned how to reduce k-SAT to the case of linear-size formulas.

Historical notes and further reading
This lecture is based on the chapter “Worst-Case Upper Bounds” from Handbook of Satisfiability
and on the four articles listed in the references.

13

References
[IPZ01] Russell Impagliazzo, Ramamohan Paturi, Francis Zane:

Which Problems Have Strongly Exponential Complexity?,
Journal of Computer and System Sciences 63, 512–530 (2001)

[IP01] Russell Impagliazzo, Ramamohan Paturi:
On the Complexity of k-SAT,
Journal of Computer and System Sciences 62, 367-375 (2001)

[CIKP03] Chris Calabro, Russell Impagliazzo, Valentine Kabanets, Ramamohan Paturi:
The Complexity of Unique-k-SAT: An Isolation Lemma for k-CNFs,
Proceedings of CCC-2003

[CIP06] Chris Calabro, Russell Impagliazzo, Ramamohan Paturi:
A duality between clause width and clause density for SAT,
Proceedings of CCC-2006

14

	The Exponential-Time Hypothesis and specific exponents
	Parameterized problems and ETH
	So many exponents!

	Subexponential reducibilities
	SERF reductions.
	SERF-completeness

	Sparsification
	The sparsification procedure
	Relating s to sdens.

	Trading the size of clauses for the number of variables
	Isolation
	Takeaway
	Historical notes and further reading

