
Boolean Satisfiability
Lecture 6: Conflict-Driven Clause Learning

Edward A. Hirsch∗

January 29, 2024

Lecture 6
In this lecture we discuss the CDCL approach that forms the basis of most known state-of-the-art
SAT solvers.

For this particular lecture, I strongly suggest to watch the video or
at least look at the slides in parallel to reading these lecture notes,
because the slides contain examples!

Contents
1 Introduction 2

2 Another look at DPLL 2

3 The basic CDCL engine 3
3.1 The intuition . 3
3.2 Overall organization . 3
3.3 Terminology . 3
3.4 The basic CDCL algorithm . 4
3.5 Conflict graph analysis . 4
3.6 Data structure: Watched literals . 5

4 Components of CDCL solvers 6

Historical notes and further reading 7
∗Ariel University, http://edwardahirsch.github.io/edwardahirsch

1

http://edwardahirsch.github.io/edwardahirsch

1 Introduction
In the previous lecture we have already seen the DPLL approach to solving SAT. The CDCL
(Conflict-Driven Clause Learning) approach can be viewed as a generalization of DPLL
(though we speak about it in somewhat different terms).

Currently, CDCL is the most popular the most successful method in SAT solving. In was
suggested in 1996–99. Since then, dozens of CDCL solvers appeared (to name a few: GRASP,
zChaff, CaDiCaL, Glucose) and are now widely used by the industry. They are also used by CS
theorists and mathematicians for checking combinatorial conjectures experimentally.

We have seen previously that the basic DPLL algorithm (splitting over a variable + unit
clause elimination + pure literal elimination) is equivalent to treelike resolution proofs. The
CDCL algorithm (with restarts) is known to be equivalent to daglike resolution proofs (which are
sometimes provably exponentially shorter than treelike proofs), so it has a greater potential. We
will not prove this fact though.

The MiniSAT project (http://minisat.se/ , by Niklas Eén and Niklas Sr̈ensson) provides
an opportunity to write a CDCL SAT solver without doing everything from scratch: it is a well-
documented open-source platform that everyone can take as the start of their project (for example,
a master thesis!).

2 Another look at DPLL
Before we proceed to CDCL, let us look at the run of a DPLL-type algorithm a little bit differently.

At least for the DPLL-type algorithm that we have seen before, at each node we choose
a variable and consider the two possible values for it (even if we split over a clause, we can
consider it as a sequence of substitutions to variables, for example, for (x ∨ y ∨ z) we consider
x = 1 vs x = 0, in the latter case we consider y = 1 vs y = 0, and in the last case the value
of z is determined from the unit clause (z), so we have the same three substitutions [x ← 1],
[x← 0, y ← 1], [x← 0, y ← 0, z ← 1] that we have seen before).

Think now of choosing a value for a variable x as a decision (recall decision trees!). How does
it happen that we come to a leaf marked by False, and have to backtrack and examine other
assignments? It means that our decisions were wrong!

How do we understand it in practice? At the very end of the branch we substitute a value for
a variable (either because of our decision or because of the unit clause elimination), and – alas –
some clause becomes falsified. Surely, this clause was a unit clause before that. Since we would
not make such a stupid decision ourselves, it means that we actually obtained two contradictory
unit clauses: z, z and substituted that value got from one of them into the other one. So the
values of some variables (on which we did not decide!) were forced (recall the PPZ algorithm!),
perhaps through a cascade of unit clause eliminations, and eventually these forced values become
contradictory, this is what we call a conflict.

The DPLL’s way to resolve a conflict is to overturn the last decision and consider the other
value for the corresponding variable, and so on – returning from the recursion. The CDCL’s way
to deal with conflicts is different.

2

http://minisat.se/

3 The basic CDCL engine

3.1 The intuition

The unit clauses involved in the conflict may appear later in other branches, when after making
different decisions on the same variables we arrive to a similar formula (part) and thus behave
similarly to what we did before. We want to avoid the unnecessary search.

So let us attempt to learn this information as a new clause that is logically implied by the input
formula (irrespective of the decisions made) and that will prevent us from doing the same search
again (it will turn into a unit clause earlier and will guide us away from the useless subspace).

Also if the wrong decisions that we made happened at higher levels of what would be the
DPLL search tree, we backtrack higher than DPLL would do.

3.2 Overall organization

Contrary to DPLL, a CDCL-type algorithm does not use the recursion explicitly, namely, it never
considers the second value of the decision variable: it happens automatically when needed. When
the CDCL algorithm cancels its decisions, it decides how many decisions it cancels (this is called
non-chronological backtracking in constrast to DPLL’s chronological backtracking), and the
direction of the further search is determined from the learned clauses.

Contrary to DPLL, a typical CDCL solver does not modify the formula clauses. It can add
(learn) new clauses, and it keeps the track of the current assignment. However, it does not
substitute the values physically to the clauses (that is, it does not remove or shorten the clauses,
it only marks some literals in them temporarily true or false), and it does not modify them in any
other way. (There are experiments that use more compicated techniques, we are describing the
“mainstream” here.)

3.3 Terminology

Let us start with introducing the terminology used in the field of CDCL SAT solving.

• Unit clause elimination is usually called unit propagation.

• We will be speaking about the level of decision (prepended by @ in writing: @0, @1, @2, . . .).

The new level is started by making a new decision for a new variable. However, other
variables that get value after that (typically, by unit propagation) are also thought of as
assigned at the same level.

We write: x5 = 1@5, meaning that x5 received value True at decision level 5.

• Implied variables are those forced by unit propagation.

• The antecedent (or the reason) of a literal ℓ is the clause of the original formula that
turned into the unit clause (ℓ). (Recall that CDCL does not remove or change clauses, so
technically this is indeed a clause where all literals but one have been set to False.)

3

@
@
@
@
@

• Assigned variables determine the implication graph:

– Vertices: assigned variables (or true literals) and False (the sink, if present).
– Edges: generated (and marked) by clauses that imply literals through unit propaga-

tion:

for example, if y and z were assigned False before x received its value True, then the
clause C = (x ∨ y ∨ z) generates y

C−→x and z
C−→ x.

• A solver can be called on formula F with “assumptions” {ℓ1, . . . , ℓa}; it solves SAT(F ∧
ℓ1 ∧ . . . ∧ ℓa), but learned clauses do not contain the assumptions and can be further used
in calls (of this solver or another one!) with different assumptions.

3.4 The basic CDCL algorithm

We describe the basic algorithm first and then continue to describing its most important procedure
of learning the clauses, called also the conflict analysis procedure, (and determining their
asserting level).

Algorithm CDCL (CNF F):

Level := 0
A := empty assignment

Repeat forever:
Apply unit propagation to F (extending A)
If F [A] = True // found sat. assignment, success!

Then return A
Elif F [A] = False // conflict!

Then
If Level = 0 // unable to backtrack, done!

Then return “no”
Else // can backtrack

Learn new clauses {Ci}i and let F := F ∧
∧

iCi

Let L∗ be the minimal asserting level among Ci’s
Unassign all variables set @levels > L∗ // backtrack to L∗!
Level := L∗

Else // no conflicts yet, new decision
Pick an unassigned variable x and value v
Let A := A ∪ {x := v}
Level := Level+ 1

3.5 Conflict graph analysis

The goal of the conflict analysis is to learn new clauses and to decide where to go afterwards (that
is, how far to backtrack). Nowadays, most solvers typically learn a single clause per conflict and

4

@

use 1UIP (“the first unique implication point”) strategy. They learn a clause that contains exactly
one literal that obtained its value @current level, and they try to learn this clause as close to the
conflict as possible.

The conflict analysis procedure starts at the conflict (falsified) node of the conflict graph and
searched for the causes of this conflict by going through the edges in the opposite direction and
deriving new clauses by resolution.

After it stops, if we cut the non-visited nodes out of it, we obtain a graph such that its source
nodes themselves imply the conflict. Of course, this is also true for the whole graph, but we are
aiming at something more efficient.

On the right of the pseudocode we include the data for the short example provided below the
procedure.

Conflict-analysis():
C := antecedent of the False node c17

Repeat
Let p be last assigned literal in C x7

D := antecedent of p c15
C := R(C,D) by p R(c15, c17) = (x6 ∨ x1)

Until C contains just one literal ℓ @Level

Learn C, state asserting level := highest decision level in C \ {ℓ} 0

Example 1. A conflict graph for an example from [FLHS].

x1@0

x2@1

x3@2 x4@2

x6@2

False

x7@2

c7

c7

c14

c14

c17

c17

c17c15

c15

c7 : (x2 ∨ x3 ∨ x4)

c14 : (x6 ∨ x4 ∨ x1)

c15 : (x6 ∨ x7 ∨ x1)

c17 : (x7 ∨ x6 ∨ x1)

3.6 Data structure: Watched literals

A typical CDCL solver spends almost all its time in the unit propagation procedure. Therefore,
we need an efficient data structure able to find the unit clauses and to substitute values for the
variables.

During the run of the algorithm the formula remains intact, only new clauses are appended
to it. So how do we understand that a clause became a unit clause under the current partial
assignment?

Let us classify clauses as:

1. Satisfied: there is a literal assigned True.

5

@
@

2. Unit: all literals are assigned (False, what else?) except one.

3. Passive, or unresolved: at least two literals are unassigned.

Only the case “2. Unit” is interesting!
We “watch” for (maintain pointers to) two literals in each yet-unsatisfied clause. If one of them

is assigned False, we may have a unit clause. If both are assigned, there is a conflict. If none are
assigned, there is nothing interesting yet.

When a new variable gets its value, we look at the yet-unsatisfied clauses where it is watched.
In such a clause, we move the pointer from the just assigned False literal in a cycle until we
find an unassigned variable (not counting the second pointer). If it is found, we move the pointer
there; otherwise, we have a unit clause.

When backtracking, we do not need to do anything to this structure: the pointers remain
where they were (think why it is correct!).

Here is an example:

0

x1

0

x2

0

x4

0

x6

0

x8x3 x5 x7

Now, the effect of x7 := 0:

0

x1

0

x2

0

x4

0

x6

0

x7

0

x8x3 x5

4 Components of CDCL solvers
We have already learned that CDCL solvers include

• Conflict analysis: what exactly caused the conflict? Which clauses do we learn from it?

• Non-chronological backtracking: backtrack higher than in DPLL.

• “Lazy” data structures.

Another important feature of CDCL solvers is that they restart the whole thing at certain
intervals following some restart sequence (strategy). A restart can be hard (just start from the
scratch with a different sequence of decisions) or soft (then, for example, the learned clauses are
kept). In fact, they are equivalent to the resolution proof system only if they use restarts.

The amount of learned clauses may become excessive (it is proportional to the time spent).
Therefore, strategies for deleting excessive learned clauses may be used.

Learned clause can also undergo minimization (for example, using resolution that derives a
subset of a learned clause).

Also various types of heuristics may be used for the choice of the decision literal.
All these components of a solver are of highly experimental nature, and this is what you needs

to work on if you want to design a new potentially ground-breaking solver.

6

Historical notes and further reading
Further reading: there is an easy expository article [FLHS]; if you want to learn more about CDCL,
you can look into Chapters 7 and 4 (I recommend this order!) in the 2nd edition of Handbook of
Satisfiability [HB7, HB4].

You can also look at very nice animations in the slides by Emina Torlak at https://courses.
cs.washington.edu/courses/cse507/17wi/lectures/L02.pdf

This is the only lecture of the course where I can recommend viewing the video more than
reading the lecture notes: my handwaving over the examples may be useful.

References
[HB4] Joao Marques-Silva, Ines Lynce, and Sharad Malik.

Conflict-Driven Clause Learning SAT Solvers,
Chapter 4 in Handbook of Satisfiability, 2nd Ed., IOS Press, 2021.

[HB7] Samuel R. Buss and Jakob Nordström.
Conflict-Driven Clause Learning SAT Solvers,
Chapter 7 in Handbook of Satisfiability, 2nd Ed., IOS Press, 2021.

[FLHS] Johannes K. Fichte, Daniel Le Berre, Markus Hecher, and Stefan Szeider.
The Silent (R)evolution of SAT,
Communications of the ACM 66(6): 64–72, 2023.
https://doi.org/10.1145/3560469

7

https://courses.cs.washington.edu/courses/cse507/17wi/lectures/L02.pdf
https://courses.cs.washington.edu/courses/cse507/17wi/lectures/L02.pdf
https://doi.org/10.1145/3560469

	Introduction
	Another look at DPLL
	The basic CDCL engine
	The intuition
	Overall organization
	Terminology
	The basic CDCL algorithm
	Conflict graph analysis
	Data structure: Watched literals

	Components of CDCL solvers
	Historical notes and further reading

