
Boolean Satisfiability
Lecture 7: Exponential lower bounds for Resolution

Edward A. Hirsch∗

February 12, 2024

Lecture 7
In this lecture we

• Prove an exponential lower bound on the size of treelike resolution refutations for the propo-
sitional pigeonhole principle.

• Establish the size-width relation for daglike resolution.

• Prove an exponential lower bound on the size of daglike resolution refutations for Tseitin
formulas.

Contents
1 A lower bound on the size of treelike resolution refutations 2

1.1 Warm-up: Decision tree depth lower bound . 2
1.2 Decision tree size lower bound . 3

2 A lower bounds on the size of daglike resolution refutations 4
2.1 Size-width relation: Daglike version . 4
2.2 An exponential lower bound on the size of resolution refutations for Tseitin formulas 5

3 Takeaway 8

Historical notes and further reading 8
∗Ariel University, http://edwardahirsch.github.io/edwardahirsch

1

http://edwardahirsch.github.io/edwardahirsch

1 A lower bound on the size of treelike resolution refutations
We start with a simpler setting: treelike resolution. Recall that treelike resolution is size-equivalent
to decision trees, so in fact we will be talking about decision trees.

We will prove lower bounds for the propositional pigeonhole principle. Recall that its negation
can be expressed using the following clauses (denoted PHP) in the variables xi,j ∼ expressing
the statement “pigeon i sits in hole j (where (1 ⩽ i ⩽ m, 1 ⩽ j ⩽ m− 1)”.

Pigeon-Hole Principle:

• Pigeon axioms (one for each pigeon i ⩽ m):
xi,1 ∨ . . . ∨ xi,m−1: pigeon i is assigned some hole.

• Hole axioms (one for each hole j ⩽ m − 1 and two different
pigeons i, i′):
xi,j ∨ xi′,j (∀i, j, i′ ̸= i): pigeons i, i′ do not share hole j.

As this formula states that there exists an injective mapping of m
pigeons to m− 1 holes, it is unsatisfiable.

1

2

3

4

5

6

1

2

3

4

5

1.1 Warm-up: Decision tree depth lower bound

Before we proceed to proving the size bound, let us consider an easier setting1: Let us prove a
lower bound on the decision tree depth (that is, the length of the longest path from the root to a
leaf).

Consider the following game between two players, called Prover and Oracle. They receive an
unsatisfiable CNF formula F (x1, x2, . . . , xn) on their input, maintain a partial assignment A to its
variables (initially empty) and communicate by repeating the following protocol:

• Prover: chooses xi that does not have any value in A and asks “What is the value of xi?”

• Oracle: answers by giving this variable its value vi (now A is augmented by {xi = vi}) and
earns a coin

The game ends when the current assignment contradicts some clause of F (which will inevitably
happen at some point, as F is unsatisfiable). Oracle’s goal is to give values that will keep the
game running as long as possible.

Let us formulate a straightforward lemma:

Lemma 1. If there is a strategy for Oracle that guarantees her to earn at least d coins, then the
depth of any decision tree for F is at least d.

Using this lemma, we prove our lower bound:

Theorem 1. The depth of any decision tree for PHP is at least m− 1 (number of holes).
1The author heard about this simple example from Dmitry Itsykson

2

Proof. Let us choose the following simple strategy for the Oracle: always return False. Note
that hole axioms cannot be falsified this way as they contain only negative literals. Therefore, the
game finishes when a pigeon axiom is falsified. Hoewever, pigeon axioms contain m − 1 literals
each, and therefore at least m− 1 variables will get a value before falsifying such an axiom; thus
Oracle will earn at least m− 1 coins. By the above Lemma, the claim follows.

1.2 Decision tree size lower bound

We now define a slightly more complicated game, relate it to the size of decision trees, and then
apply this result to the propositional pigeonhole principle.

Prover–Delayer games. The game is now between Prover and Delayer (who still receive an
unsatisfiable formula F (x1, x2, . . . , xn) on their input, and who still maintain a partial assignment
to its variables).

The communicate by repeating the following dialogue:

• Prover: chooses xi that does not have any value in A and asks “What is the value of xi?”

• Delayer

– either answers by giving this variable its value vi (now A is augmented by {xi = vi})
earning nothing,

– or delegates it to Prover, in which case Delayer earns a coin and Prover chooses the
value vi and A is updated with {xi = vi}.

The game ends when A contradicts some clause of F . Now Delayer is interested in delegating
as many as possible decisions to Prover, (and through that also in running this game as long as
possible because when the game ends, there is no chance to delegate or to do anything anymore).

Let us prove the following lemma relating successful Delayer’s strategies to the size of decision
trees.

Lemma 2. If there is a strategy for Delayer that guarantees Delayer to earn at least d coins, then
the size of any decision tree for F is at least 2d.

Proof. Given a decision tree T and such a strategy for Delayer, let us use it together with the
following randomized strategy for Prover who uses T and starts in its root.

• Ask about the variable that is asked in the current node p of the decision tree.

• If Delayer delegates, choose a random value for xi (with probability 1/2 each).

• In T , go to the child of p according to the value of xi (either obtained from Delayer or chosen
at random as stated above).

Consider a specific leaf corresponding to a partial assignment A. How do we come to it?

3

• Delayer must choose the values consistent with A.

• Prover must pick the values consistent with A. It performs its random choice at least d
times, as we assumed that Delayer has a strategy that brings at least d coins.

Therefore, the probability to finish the game in this leaf is at most 2−d.
This applies, of course, to every leaf of T . On the other hand, the probability to finish in some

leaf is 1. Therefore, there are at least 2d leaves in T .

A lower bound on the size of decision trees for PHP. Let us consider the following Delayer
strategy.

When Prover asks about xi,j :
• If pigeon i already has a hole

or
hole j is already occupied

Then answer False

Else delegate (and earn a coin)

i

5

9

j

How many coins does Delayer earn?

• Hole axioms can never be falsified: if Delayer chooses a value, it is always False, and if
Prover chooses a value, Delayer makes sure that it does not concern a hole that is already
occupied.

• If a pigeon axiom xi,1 ∨ . . . ∨ xi,m−1 is falsified (that is, pigeon i becomes homeless),
then, for every hole j, when Prover asked about xi,j ,

– either Delayer delegated xi,j and earned a coin
– or hole j was already occupied by a lucky pigeon i′ —

then who set xi′,j to 1? Prover! Thus Delayer earned a coin at that moment

Thus for every hole, Delayer earned a coin, so this strategy always brings at least m − 1 coins.
Using Lemma 2 we thus conclude the proof of our lower bound:

Theorem 2. Any decision tree for PHP must have 2Ω(m) leaves.

2 A lower bounds on the size of daglike resolution refutations

2.1 Size-width relation: Daglike version

In Lecture 5 we proved the relation between the minimum size and width for treelike resolution
refutations. We now prove it for the general case (daglike resolution refutations).

The strategy is the same: split our formula into two that have narrower proofs, then combine
these proofs in one using the lemma that we proved in Lecture 5 (it is valid both for treelike and
daglike proofs, as it concerns the proof width only).

4

Lemma 3 (see Lecture 5). Let F be in k-CNF.
Let F [ℓ← 0] be refutable within width w − 1.
Let F [ℓ← 1] be refutable within width w.
Then F is refutable within width max(w, k).

Theorem 3. Assume we have a length-s daglike resolution refutation of a k-CNF F . Then F has
a daglike resolution refutation of width at most k +O(

√
n log2 s).

Proof. Set d :=
√
2n ln s and a := (1 − d

2n
)−1. We call a clause “fat” if it is wider than d. Our

plan is to get rid of many fat clauses.
Let f be the number of fat clauses in our resolution refutation. We prove the following

statement by induction on n (the number of variables) and b (defined below):

“If a formula F has a resolution refutation containing less than ab fat clauses,
then F has a resolution refutation of width at most k + b+ d”.

The induction base (b = 0 or n = 0) is trivial. To prove the induction step, observe that, as
there are only 2n literals, there must be a literal ℓ appearing in at least d

2n
· f fat clauses of

the refutation.
In F [ℓ ← True] they all disappear, thus there are at most (1 − d

2n
)f < ab−1 fat clauses.

Thus (induction on b) F [ℓ← True] is refutable within width k + b+ d− 1.
Concerning F [ℓ← False], we use the induction hypothesis for n− 1 variables (as we get

rid of ℓ) to conclude that F [ℓ← False] is refutable within width k + b+ d.
Combining these two refutations by Lemma 3 we get the induction hypothesis.

Now apply this statement for b = loga s since the number fat clauses ⩽ s− 1.

The following corollary is immediate:

Corollary 1. If there are no width-w refutations of a k-CNF F , then all its proofs must have size
2Ω(

(w−k)2

n
).

Note that this corollary is useful for the values of w that are much larger than both k and
√
n.

2.2 An exponential lower bound on the size of resolution refutations for
Tseitin formulas

Tseitin formulas. Given a connected graph G = (V,E), consider the following formula (called
Tseitin formula). Introduce a variable xe for every edge e ∈ E. For every vertex v ∈ V of degree
dv, write a dv-CNF expressing that

⊕
e∈v xe = 1. Take the conjunction of all these CNFs.

Remark. 1. A Tseitin formula is unsatisfiable if and only if |V | is odd.
2. One can label the vertices using 0’s and 1’s and consider equations

⊕
e∈v xe = cv, where

cv is the label of v. Then the unsatisfiability condition transforms into “⊕v∈V cv is odd”. In this
lecture we consider cv = 1 for simplicity.

5

Example 1.

⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕

x1

x3

⊕

x2

x4

x6

x8

x10

x12

x7

x9

x11

x13

x14 x15x5

⊕

x1 ⊕ x10 ⊕ x14 = 1

x10 ⊕ x6 ⊕ x2 ⊕ x11 = 1

x7 ⊕ x15 ⊕ x11 = 1

(etc.)

We will be interested in constant-degree graphs, so the size of the formulas is linear in the
number of vertices.

Awareness function µ. We intend to introduce the “awareness function” µ : {clauses} → R⩾0

such that

• µ(axiom) ⩽ 1.

• µ(False) is large.

• µ grows smoothly throughout the derivation.

Then we will be able to argue that there is a clause that has an “intermediate” value of µ.
A Boolean function f implies another Boolean function g if ∀A (f(A) = True ⇒ g(A) =

True). We say that g is implied by f Recall that we talked about “a clauses implied by a formula”
in the context of CDCL algorithms.

For a clause C, define µ(C) as the minimum number of the input xor-equations implying C.
(Note that while we are talking about CNFs, we can still talk about the xor-equation underlying
the Tseitin formula we study.)

Obviously, for every input clause I, it must be that µ(I) = 1 (it is implied exactly by the
xor-equation of which it is a part of the CNF description).

It is easy to see (see homework HW#2) that that for a 2-connected2 graph, no proper subset
of our xor-equations is contradictory, that is, µ(∅) = |V | .

When we make a resolution step
A, B

C
the resulting clauses C must be implied by the union of the sets of input xor-equations implying
A and B, respectively. Thus µ(C) ⩽ µ(A) + µ(B).

It means that µ cannot increase more than twice, so in a resolution proof of the Tseitin formula
for a graph (V,E) there must be a clause C∗ such that

1

3
⩽

µ(C∗)

|V |
⩽

2

3
.

2A graph is called 2-connected if after removing a vertex it remains connected.

6

(Indeed, if there is no such clause, consider the first clause C in the refutation that has µ strictly
greater than 2

3
|V |. Both its premises A and B have µ strictly less than 1

3
|V |, which is impossible

as then 2
3
|V | < µ(C) ⩽ µ(A) + µ(B) < (1

3
+ 1

3
)|V |.)

Connecting width to expansion. Consider the Tseitin formula for a graph G = (V,E). For
a subset U ⊆ V of vertices, define fU as the set of the input xor equations for the vertices in U .
We also identify this set with the Boolean function

∧
u∈U

(⊕
e∋u xv = 1

)
and the corresponding

subformula of the Tseitin formula.
For a subset U ⊆ V of vertices, define its edge boundary ∂U as the set of edges (and

corresponding variables) leaving U . Note that for every variable x in this set, there is exactly one
xor-equation r = x ⊕ . . . in fU where x occurs. Therefore, for every assignment A, if we flip the
value of x in A, r is changed and the values of all other r′ ∈ fU do not change.

Example 2.

⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕

x1

x3

⊕

x2

x4

x6

x8

x10

x12

x7

x9

x11

x13

x14 x15x5

Consider the conjunction of the three xor-
equations corresponding to the three vertices in
the yellow box:

x1 ⊕ x10 ⊕ x14 = 1

x10 ⊕ x6 ⊕ x2 ⊕ x11 = 1

x7 ⊕ x15 ⊕ x11 = 1

Boundary variables are colored in red.
It allows us to prove the following lemma.

Lemma 4. Let fU ⊆ F be the minimum size subset of the input xor-equations implying a clause
C. Then every boundary variable x ∈ ∂U appears in C.

Proof. Assume the contrary (that is, x does not appear in C). We know that fU = Y ∪{r}, where
r is a xor equation containing x, and Y does not contain x.

We claim that Y implies C, so fU is not the minimum size subset. Assume for a moment that
this is not the case, that is, there is an assignment B failing this implication:

Y [B] = True and C[B] = False.

Note that as C and Y do not contain x, also

Y [Bx] = True and C[Bx] = False.

(Recall that Bx is the assignment B with the value of the variable x flipped.)
We know that r[B] ̸= r[Bx], so one of these two values is True, and the corresponding as-

signment B′ fails also the implication of C by fU as for it fU [B
′] = C[B′] ∧ r[B′] = True and

C[B′] = False.

7

Expander graphs are those that have a large boundary for every subset of vertices up to a
certain size. In particular, there exist such graphs of constant degree k and such that for every
U ⊆ V of cardinality |U | ⩽ 2

3
|V |, the boundary has size Ω(|U |). These graphs are very much

connected, in particular, 2-connected. We do not study expander graphs in this course, so just
take this for given.

Recall now that our resolution refutation contains a clause C∗ such that |V |
3

⩽ µ(C∗) ⩽ 2|V |
3

.
Consider the minimum-size set F∗ of input xors implying C∗. Its size is between 1

3
|V | and 2

3
|V |, thus

for the expander graph we use its boundary has size Ω(|U |) = Ω(|V |). By Lemma 4, C∗ contains
Ω(|V |) variables. By plugging this width lower bound into Corollary 1 we get the resolution
refutation size lower bound

2Ω(
(w−k)2

n
) = 2

(Ω(n)−k)2

n = 2Ω(n).

3 Takeaway
We have demonstrated an exponential lower bound on the resolution proof size. As we know,
CDCL algorithms cannot run faster than the size of such a proof. In the next lecture, we will
study stronger proof systems which have shorter proofs for these hard examples.

Historical notes and further reading
The first superpolynomial bounds for regular resolution we proved by Gregori Tseitin in the 1960s.
He used linear equations modulo two for a grid graph. The bounds for unrestricted resolution were
proved in the 1980s. Armin Haken proved exponential bounds for the propositional pigeonhole
principle and Alasdair Urquhart proved exponential lower bounds for Tseitin formulas on expander
graphs. Just before that Ofer Gabber and Zvi Galil gave the first construction of appropriate
expanders.

Prover-Delayer games were suggested by Pavel Pudlák and Russell Impagliazzo [PI]. A uniform
exposition of resolution lower bounds through the size-width technique can be found in the paper
by Eli Ben-Sasson and Avi Wigderson [BSW].

References
[BSW] Eli Ben-Sasson, Avi Wigderson:

Short proofs are narrow — resolution made simple.
J. ACM 48(2): 149-169 (2001)

[PI] Pavel Pudlák, Russell Impagliazzo:
A lower bound for DLL algorithms for k-SAT (preliminary version).
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA-2000, pp. 128–136, 2000.

8

	A lower bound on the size of treelike resolution refutations
	Warm-up: Decision tree depth lower bound
	Decision tree size lower bound

	A lower bounds on the size of daglike resolution refutations
	Size-width relation: Daglike version
	An exponential lower bound on the size of resolution refutations for Tseitin formulas

	Takeaway
	Historical notes and further reading

