
Boolean Satisfiability
Lecture 9: Frege proof systems

Edward A. Hirsch∗

February 26, 2024

Lecture 9
In this lecture we show that the following proof systems are polynomially equivalent:

• Frege systems that prove tautologies and Frege systems that refute unsatisfiable formulas.

• Daglike and treelike Frege systems.

• Frege systems that use different sets of sound (correct) rules and axioms (as long as these
sets are complete and implicationally complete).

• Extended Frege and Extended Resolution.

Contents
1 Definition of Frege systems 2

2 Notation for derivations 3

3 Proof by contradiction and the deduction theorem 3

4 Implicational completeness 4

5 Equivalence of Frege systems 4

6 Treelike vs Daglike mode 5

7 Extended Frege is polynomially equivalent to Extended Resolution 6

8 Takeaway 7

Historical notes and further reading 7
∗Ariel University, http://edwardahirsch.github.io/edwardahirsch

1

http://edwardahirsch.github.io/edwardahirsch


1 Definition of Frege systems
Recall the definition from the previous lecture.

A Frege proof system proves Boolean tautologies (or refutes unsatisfiable formulas) in a lan-
guage of formulas that use certain Boolean connectives (operations). It could be the set {∨,∧,¬},
where ∨ and ∧ are binary and ¬ is unary, or some other set.

A Frege system consists of a constant number of derivation rules of the form

Φ1 Φ2 . . . Φk

Ψ
,

where Φi,Ψ are propositional formulas using “abstract” Boolean variables (these are not the vari-
ables of the formula that we prove or refute). The rules must be sound, that is,

∀X1 ∀X2 . . . (Φ1 ∧ Φ2 ∧ . . . ∧ Φk ⇒ Ψ).

(Here, Xi’s are the abstract variables.) Some of the rules (those with k = 0) are axioms.
A Frege derivation in a specific Frege system derives new formulas step by step by applying

instances of the derivation rules of the system: such instance is obtained by substituting the
abstract variables X1, X2, . . . by Boolean formulas (the latter formulas use the variables appearing
in the formula we prove).

For example, consider the following axioms

(P ⇒ P )

P ⇒ (Q⇒ P )

(¬Q⇒ ¬P )⇒ ((¬Q⇒ P )⇒ Q)

(P ⇒ (Q⇒ R))⇒ ((P ⇒ Q)⇒ (P ⇒ R))

(P ⇒ Q))⇒ ((P ⇒ (Q⇒ R))⇒ (P ⇒ R))

and one derivation rule (modus ponens):

P P ⇒ Q

Q

One can use her either a 0-ary operation False or the negation ¬: ¬F is an equivalent for
(F⇒ False).

Typical rules used in Frege systems formulate commutativity, associativity and distributivity
laws and allow equivalent changes in the structure of the formula (such as replacing A ∨ A by A,
and vice versa).

2



2 Notation for derivations
We introduce the following notation, which applies to any systems that derive lines step by step.

F ⊢ G: G is derived from F in one step,

F ⊢∗ G: G is derived from F in several (maybe zero) steps.

If there is no F , we mean that we use the axioms only: ⊢∗ G.

In this notation, F and G can refer to lists of formulas.

3 Proof by contradiction and the deduction theorem
In Frege systems, proving a tautology F from the axioms and refuting its negation ¬F are equiv-
alent approaches.

Let us prove it for our example system.

Theorem 1 (Proof by contradiction). ⊢∗ F if and only if ¬F ⊢∗ False. Moreover, the length
of the shortest proof that F is a tautology is within a polynomial of the length of the shortest
refutation of F , and vice versa.

This theorem is immediately implied by the deduction theorem (put G = False):

Theorem 2 (Deduction theorem). Γ ⊢∗ (F ⇒ G) iff Γ, F ⊢∗ G.
Moreover, the two (minimal) derivations sizes are within a polynomial of each other.

Proof. →: Trivial use of modus ponens.

←:
Consider the derivation Γ, F ⊢∗ G: φ1, φ2, . . . , φs.
Replace φi by (F⇒φi): (F ⇒ φ1), . . . , (F ⇒ φs).
Let us convert the obtained sequence of formulas into a valid proof by adding intermediate

steps. Proceed from the left to the right. How was φ derived in the original proof? Consider the
three possible cases:

φi is F : No changes are needed, as
(axiom) (F⇒ F ).

φi is derived by modus ponens:
φj φj ⇒ φi

φi
.

Then consider the two already derived formulas and insert three derivation steps:
(given) F ⇒ φj

(given) F ⇒ (φj ⇒ φi)
(axiom) (F⇒φj)⇒ ((F⇒(φj ⇒ φi))⇒ (F ⇒ φi))
(modus ponens, twice) F ⇒ φi

3



φi is an axiom or is in Γ: Insert the following three steps:
(axiom) φi ⇒ (F ⇒ φi)
(axiom) φi

(modus ponens) F ⇒ φi

4 Implicational completeness
A Frege system is complete, if for every tautology F , we have ⊢∗ F .

A Frege system is implicationally complete, if for every semantic implication1 (F ⇒ G),
we can derive G from F , that is, F ⊢∗ G.

The implicational completeness of our example system follows from its completeness and the
deduction theorem: since F ⇒ G is a tautology, ⊢∗ (F ⇒ G), thus F ⊢∗ G.

It remains to show the completeness. Let us split a refutation of an unsatisfiable formula into
two cases (x = 0, x = 1) and then combine the two refutations (that exist by induction):

• given an unsatisfiable F , assume that F, x ⊢∗ False and F,¬x ⊢∗ False;

• combine the two derivations: by the deduction theorem the first derivation can be trans-
formed into F ⊢∗ ¬x, now we can use the second derivation.

Where is the end (that is, the base) of this induction? This is when we considered all the variables
occurring in F , that is, it remains to refute F, ℓ1, ℓ2, . . . , ℓn for literals ℓi corresponding to variables
xi with the corresponding signs. Then ¬F can be derived by the induction on the construction
(structure) of F . If F is a literal ℓ, then ℓ is already on the list. If F is (G⇒ H), then we derive
G and (H ⇒ False) by the induction hypothesis and arrive at a contradiction with (G ⇒ H)
(modus ponens, twice).

5 Equivalence of Frege systems
Theorem 3. All sound and complete, implicationally complete Frege systems polynomially simu-
late each other.

Proof. Case 1. In the case where the two systems use the same set of operations (or the operations
can be rewritten without a blowup, for example, by the de Morgan rules), the proof is easy.

Consider two Frege systems, F1 and F2. Each rule of a Frege system is sound. Therefore, they
are all semantic implications. By implicational completeness, each rule of F1 can be therefore
simulated in F2. As these rules are constant-size objects, so the derivation is also constant-size.
The same applies to the axioms (by completeness).

Let us simulate an F1 derivation in F2 step by step: just apply the above simulations to the
particular use of the rules.

1Recall that semantic implication means that for all possible values of Boolean variables the implication is true;
that is, the implication is a tautology.

4



Case 2. If we change the operations, deeply nested formulas can blow up if a rewrite of
these operations involve more than one occurrence of subformulas (for example, if we attempt to
rewrite the equivalence into the de Morgan basis, F ≡ G ⇐⇒ (F ∧ G) ∨ (¬F ∧ ¬G), the
formulas F (and G) appear twice in the expression, so if we continue to rewrite them, we can get
an exponential blow-up; try translating some linear-depth formula like (. . . ((x1 ≡ x2) ≡ (x3 ≡
x4)) . . . ≡ xn−1 . . .) ≡ xn).

This can be overcome using the indirect translation, which reduces the formula depth. Consider
a formula F .

• Let A be a subformula of ≈ half size of F :
F = B(A) (think about a subtree A and remaining part B: “inner subtree” and “outer
subtree”).

• Replace F by the equivalent (B(True) ∧ A) ∨ (B(False) ∧ ¬A).

• Proceed inductively till depth-1 formulas (operations).

The operations themselves are translated at the lowest level, there is no recursion there, so no
blowup. The number of levels is logarithmic, so the size of the obtained formula is polynomial.

It remains to learn how to work with this representation. These technical details can be found
in the dissertation of Robert Reckhow [1].

6 Treelike vs Daglike mode
As all derivation systems, Frege systems can be used in a daglike mode or in a treelike mode.
However, for Frege systems these modes are equivalent.

In order to transform a daglike derivation into a treelike one, we keep the whole “history” of
derivation in the last derived formula. So we transform a daglike derivation

F1

F2

. . .

Fn

into the treelike derivation

F1

F1 ∧ F2

. . .

F1 ∧ F2 ∧ . . . ∧ Fn

Fn

5



The last step is made using a (sound) derivation rule

Φ1 ∧ Φ2

Φ1

.

Consider another step
Fi, Fj

Fk

.

For simplicity, let it be an application of a binary rule

Φ1, Φ2

Ψ
.

We derive F1 ∧ . . . ∧ Fk from F1 ∧ . . . ∧ Fk−1. For this, we need to extract Fi and Fj from the
conjunction, apply the rule and derive Fk without losing any previous formulas. So the new rule
looks like

Φ1 ∧ Φ2 ∧ Φ

Φ1 ∧ Φ2 ∧ Φ ∧ Ψ
,

which is obviously correct, because the old rule was correct. To be absolutely formal, we should use
the commutativity and associativity rules to bring Fi and Fj to the front of the big conjunction.

It is easy to see that the proof size is increased polynomially (actually, cubically).

7 Extended Frege is polynomially equivalent to Extended
Resolution

Theorem 4. Extended Resolution polynomially simulates Extended Frege

Proof (Sketch). Consider an Extended Frege refutation.
Recall Tseitin’s translation and introduce a new variable for every node of every (sub)formula

appearing in an Extended Frege proof. Thus each formula is converted into a CNF.
Start with the rules themselves. They are translated to derivations of (conjunctions of) implied

clauses. As we already know (from a homework exercise), implied clauses can be derived using
resolution (with the weakening rule, but we also know that at the end we can get rid of it).

Note that we have a variable for each subformula, so we can apply these rules to extension
variables. Combine all these resolution refutations into one resolution refutation using extension
axioms.

The opposite direction is trivial: the resolution rule is a particular case of a Frege rule

Φ ∨ Γ, Ψ ∨ ¬Γ
Φ ∨ Ψ

applied to very simple formulas (disjunctions of literals Φ and Ψ and a variable Γ). Commutativity,
associativity, and structural rules (for removing duplicated literals) complete the job.

6



8 Takeaway
For Frege systems, nothing matters: different rules, proofs vs refutations, treelike vs daglike, all
of them are polynomially equivalent.

If we use the extension rule, then even the (weak) Resolution system turns into a (very strong)
Extended Frege system.

Historical notes and further reading
See the previous lecture.

References
[1] Robert A. Reckhow. On the lengths of proofs in the propositional calculus. PhD the-

sis, University of Toronto, 1976. https://www.cs.toronto.edu/~sacook/homepage/
reckhow_thesis.pdf

7

https://www.cs.toronto.edu/~sacook/homepage/reckhow_thesis.pdf
https://www.cs.toronto.edu/~sacook/homepage/reckhow_thesis.pdf

	Definition of Frege systems
	Notation for derivations
	Proof by contradiction and the deduction theorem
	Implicational completeness
	Equivalence of Frege systems
	Treelike vs Daglike mode
	Extended Frege is polynomially equivalent to Extended Resolution
	Takeaway
	Historical notes and further reading

