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Lecture 10
In this lecture we prove an exponential-size lower bound on the size of Cutting Planes proofs of
clique-coloring formulas and discuss polynomial-size upper bounds on the size of Frege proofs of
PHP.
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1 An exponential lower bound on the length of Cutting Planes
proofs

1.1 Interpolation by circuits

Consider two disjoint sets A,B ∈ NP. As A∩B = ∅, we can separate them by a function (called
an interpolant) that gives the answer 0 on A, gives the answer 1 on B, and can give any answer
on the complement of A ∪B:

• x ∈ A ⇒ C(x) = 1.

• x ∈ B ⇒ C(x) = 0.

• x /∈ (A ∪B) — doesn’t matter.

{0, 1}n

A B

We will be interested in presenting this function as a Boolean circuit. Is there a polynomial-size
circuit C achieving this goal? If we think about cryptographic encoding of single bits, then sets
A = {codewords for 0} and B = {codewords for 1} should not be distinguishable this way. Yet
nobody so far can prove that there are NP-sets for which it is impossible.

Example 1. A = {satisfiable formulas in CNF}, B = {unsatisfiable formulas in CNF that have
resolution refutations of size at most 9n9}.

Let us consider a simpler setting: monotone circuits. These are circuits that use only mono-
tonically increasing operations: for example, ∨ and ∧ (if an argument increases, then the value
does not decrease).

Is it reasonable to separate NP-sets with a monotone circuit? Not always: if the sets themselves
are not “monotone”, it’s weird. However, for monotone sets it is reasonable. For example, if you
add an edge to a graph (increase the value of the corresponding variable), then you may acquire
a new m-clique, but you cannot lose any m-cliques you had in your graph.

Replace A and B by their characteristic functions (A(x) = 1 ⇐⇒ x ∈ A). Let A be the
set of graphs containing an m-clique, so the “clique function” A(x) that tells us whether the
graph x contains an m-clique, is monotonically increasing (as as a function of the

(
n
2

)
variables

corresponding to the edges of an n-vertex graph). On the other hand, the “coloring function” B(x)
that tells us whether x can be colored in m− 1 colors, is monotonically decreasing.

Fortunately, in this model exponential-size lower bounds are known:

Theorem 1 (Razborov; Alon–Boppana). Let m = ⌊18(n/ log n)
2/3⌋,

A = {n-vertex graphs containing m-cliques}, B = {n-vertex (m− 1)-colorable graphs}.
For every monotone Boolean circuit distinguishing A and B,

|C| = 2Ω(
√
m).

Pavel Pudlák generalized this theorem to circuits that operate with integer numbers (and not
just bits) and use monotone integer operations (addition, multiplication by a nonnegative integer
constant, division by a nonnegative integer constant with rounding up).
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1.2 Interpolation in logic

A similar notion is known in logic:

Theorem 2 (Craig). If A(p⃗, q⃗) ⇒ B(p⃗, r⃗), then one can construct a formula C(p⃗) such that
A(p⃗, q⃗) ⇒ C(p⃗) and C(p⃗) ⇒ B(p⃗, r⃗).

We are interested in the propositional version of this theorem, so A,B,C are Boolean formulas
(and C can be large!). Let us rewrite this theorem:

Theorem 3. If A(p⃗, q⃗) ∧ B(p⃗, r⃗) is unsatisfiable, then one can construct a formula C(p⃗) such
that ¬C(p⃗) ⇒ ¬A(p⃗, q⃗) and C(p⃗) ⇒ ¬B(p⃗, r⃗).

Let A, B be in the de Morgan basis. If pi’s occurs only positively in A and only negatively in
B, then one construct a monotone C(p⃗), which we will do. An example of appropriate formulas
A and B is given by clique-coloring formulas:

n∨
i=1

qki for 1 ⩽ k ⩽ m the k-th node of the clique

qki ∨ qk′i for 1 ⩽ i ⩽ n and 1 ⩽ k < k′ ⩽ m all nodes are different
qki ∨ qk′,j ∨ pij for 1 ⩽ k < k′ ⩽ m and 1 ≤ i < j ≤ n edge between the nodes k and k′

m−1∨
ℓ=1

riℓ for 1 ⩽ i ⩽ n vertex i is colored

pij ∨ riℓ ∨ rjℓ for 1 ≤ i < j ≤ n, 1 ⩽ ℓ ⩽ m− 1 correctness of the coloring

1.3 An exponential lower bound for Clique-Coloring formulas

Our proof strategy will be

• Construct a monotone circuit C based on a Cutting Planes refutation so that the circuit size
is at most polynomial w.r.t. the refutation size.

• Conclude that if there is a short CP proof, then there is a small C.

• Get a contradiction with Razborov’s theorem (Pudlák’s version).

The structure of the circuit will mimic the structure of the proof dag.

General construction. Our circuit is given a specific graph (that is, pij’s values) on its input,
and will answer 0, if the graph contains no m-clique, and 1, if the graph is not (m−1)-colorable. (If
the graph contains no clique and is not colorable, then the circuit can answer anything.) Namely,
the circuit will tell us which of the two parts of clique-coloring formula is unsatisfiable.

Consider the Cutting Planes refutation. Substitute these values for pij’s into it.
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The input inequalities contain now only qki’s or only rjℓ’s. There are no mixed inequalities.
Each inequality appearing in the refutation will be split into a q-part and an r-part:

∑
k,i αkiqki +

∑
i,j βijpij +

∑
j,ℓ γjℓrjℓ ≥ c −→

∑
k,i αkiqki ≥ c′∑
j,ℓ γjℓrjℓ ≥ c′′

How to split c = c′ + c′′? The two inequalities should be at least as strong. It suffices to have
c′ + c′′ ≥ c−

∑
ij βijpij. Indeed, then they are at least as strong: otherwise there are values such

that ∑
k,i αkiqki +

∑
i,j βijpij +

∑
j,ℓ γjℓrjℓ < c∑
k,i αkiqki ≥ c′∑
j,ℓ γjℓrjℓ ≥ c′′

But then
c′ + c′′ < c−

∑
ij

βijpij.

Splitting the constants. We will split the constants in every derived inequality. We will do it
step by step starting from the input inequalities.

Input inequalities are already split (there is only one part). How could the next inequality be
obtained? There are three cases.

Addition. Let Pa, Qa, Ra denote the corresponding sums
∑

β
(a)
ij pij, etc. We had a derivation

step
P1 +Q1 +R1 ≥ c1 , P2 +Q2 +R2 ≥ c2

(P1 + P2) + (Q1 +Q2) + (R1 +R2) ≥ c1 + c2

The two premises already were split as[
Q1 ≥ c′1
R1 ≥ c′′1

]
and

[
Q2 ≥ c′2
R2 ≥ c′′2

]
.

Let us simply take the sum of the constants, that is, split the conclusion into[
Q1 +Q2 ≥ c′1 + c′2
R1 +R2 ≥ c′′1 + c′′2

]
.

We need that
(c′1 + c′2) + (c′′1 + c′′2) ≥ (c1 + c2)− (P1 + P2).

Given
c′1 + c′′1 ≥ c1 − P1,
c′2 + c′′2 ≥ c2 − P2

it is obvious.

Multiplication by a nonnegative constant is similar.
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The rounding rule. If the next inequality is obtained using the rounding rule, let us divide
and round the constants accordingly:

d · P + d ·Q+ d ·R ≥ c

[
d ·Q ≥ c′

d ·R ≥ c′′

]
P +Q+R ≥ ⌈c/d⌉

[
Q ≥ ⌈c′/d⌉
R ≥ ⌈c′′/d⌉

]
Since

c′ + c′′ ≥ c− d · P,

we have
⌈c′/d⌉+ ⌈c′′/d⌉ ≥ ⌈c/d⌉ − P.

Putting everything together: the circuit. The end of the CP refutation is split as

0 ≥ 1 −→
[
0 ≥ c′

0 ≥ c′′

]
We know that

c′ + c′′ ≥ 1.

Therefore, one of the inequalities in this pair is a contradiction showing us what input part was
contradictory (”Q” or “R”).

The circuit (it is enough to build it for the “R” part is built from the end. It is bases on the
proof graph, and the constants c′ and c′′ are computed from the previous level constants.

The circuit inputs are pij’s, and the first constants are computed simply by substituting their
values in the input inequalities (that is, computing the relevant sums

∑
βijpij and subtracting

them from the constants of the input inequalities). Also there are axioms

0 ≤ pij ≤ 1

Treat them as the first and the second inequalities in the pairs, respectively. (The other one is
0 ⩾ 0.)

As we see from our construction, the constants are computed using monotone operations: the
addition, the multiplication by a nonnegative constant, the division with rounding up. So our
circuit is monotone, and the number of its internal gates is the same as the number of steps in the
CP refutation.

2 PHP in Frege
Theorem 4 (Buss). PHP has polynomial-size proofs in Frege systems.
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Why does PHP have short CP proofs? Recall the CP refutation for it: we compute a big sum
there, so the reason is: CP can count.

Consider an alternative refutation of PHP in Extended Frege. Since we can introduce new
variables for the gates of any circuits, we can encode any Boolean circuits including integer
addition, multiplication, rounding (working on binary representations of integer numbers).

In Frege systems, we cannot encode any circuits. However, we can use formulas. A log-depth
circuit can be transformed into a formula with a polynomial increase in size.

So it remains to implement integer operations using log-depth circuits to express the formula
Counti(x1, . . . , xn) = the i-th bit of

∑n
j=1 xj. and to learn how to work with these formulas.

We will not elaborate on the details in this run of the course, see the references.

3 Takeaway
Efficient monotone interpolation and (generalized) Razborov’s theorem allowed us to show exponential-
size lower bounds on CP proofs of clique-coloring formulas.

Frege systems can count, and thus can prove PHP within polynomial size.

Historical notes and further reading
Jan Krajíček suggested to use monotone interpolation for proving exponential-size lower bounds on
the length of Cutting Planes proofs and proved such bounds for CP proofs with small coefficients.
Pavel Pudlák [Pud97] generalized his ideas by generalizing Alexander Razborov’s theorem to
integer arithmetic and showed the bound that we proved in the lecture (you can check the original
paper for more details).

The short proof of PHP in Frege systems is due to Sam Buss [Bus87] (again, you can check
the original paper for the details).
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