
Exponential lower bounds for the running time
of DPLL algorithms on satisfiable formulas

Michael Alekhnovich1, Edward A. Hirsch2 ?, and Dmitry Itsykson3

1 Institute for Advanced Study, Princeton, USA, misha@ias.edu
2 Steklov Institute of Mathematics, St. Petersburg, Russia, hirsch@pdmi.ras.ru

3 St.Petersburg State University, St.Petersburg, Russia, dmitrits@mail.ru

Abstract. DPLL (for Davis, Putnam, Logemann, and Loveland) algo-
rithms form the largest family of contemporary algorithms for SAT (the
propositional satisfiability problem) and are widely used in applications.
The recursion trees of DPLL algorithm executions on unsatisfiable formu-
las are equivalent to tree-like resolution proofs. Therefore, lower bounds
for tree-like resolution (which are known since 1960s) apply to them.

However, these lower bounds say nothing about the behavior of such
algorithms on satisfiable formulas. Proving exponential lower bounds for
them in the most general setting is impossible without proving P 6= NP;
therefore, in order to prove lower bounds one has to restrict the power of
branching heuristics. In this paper, we give exponential lower bounds for
two families of DPLL algorithms: generalized myopic algorithms (that
read up to n1−ε of clauses at each step and see the remaining part of the
formula without negations) and drunk algorithms (that choose a variable
using any complicated rule and then pick its value at random).

1 Introduction

SAT solving heuristics. The propositional satisfiability problem (SAT) is one
of the most well-studied NP-complete problems. In this problem, one is asked
whether a Boolean formula in conjunctive normal form (a conjunction of clauses,
which are disjunctions of literals, which are variables or their negations) has an
assignment that satisfies all its clauses. Despite the P 6= NP conjecture, there
is a lot of algorithms for SAT (motivated, in particular, by its importance for
applications). DPLL algorithms (defined below) are based on the most popu-
lar approach that originates in the papers by Davis, Putnam, Logemann and
Loveland [10, 9]. Very informally, these algorithms use a “divide-and-conquer”
strategy: they split a formula into two subproblems by fixing a value of some
literal, then they recursively process the arising formulas. These algorithms re-
ceived much attention of researchers both from theory and practice and are
heavily used in the applications.

? Supported in part by RAS program of fundamental research “Research in principal
areas of contemporary mathematics” and by a grant from National Science Support
Foundation.

Lower bounds for Resolution and the running time of DPLL algorithms. Propo-
sitional proof systems form one of the simplest and the most studied model in
propositional calculus. Given a formula F , a propositional proof system allows to
show that F is unsatisfiable. For example, using the well-known resolution rule
x∨C1; ¬x∨C2

C1∨C2
one can non-deterministically build a resolution refutation of F ,

which may be used as a certificate of unsatisfiability for the formula F . The size
of the minimum tree-like resolution refutation and the running time of DPLL
algorithms are related by the following well-known statement.

Fact 1. For each unsatisfiable formula the shortest tree-like resolution proof is at
most polynomially longer than the smallest recursion tree of a DPLL algorithm,
and vice versa.

Therefore, (sub)exponential lower bounds for tree-like resolution (starting with
Tseitin’s bounds [15] and finishing with quite strong bounds of [13]) imply that
any DPLL algorithm should take exponentially long to prove that the corre-
sponding formulas are unsatisfiable. However, these results say nothing in the
case of satisfiable formulas. There are several reasons why the performance may
differ on satisfiable and unsatisfiable instances:

– Experiments show that contemporary SAT solvers are able to solve much
larger satisfiable formulas than unsatisfiable ones [14].

– Randomized one-sided error algorithms fall out of scope, since they do not
yield proofs of unsatisfiability.

– If a DPLL algorithm is provably efficient (i.e. takes polynomial time) on some
class of formulas, then one can interrupt the algorithm running on a formula
from this class after sufficiently large number of steps if it has not found a
satisfying assignment. This will result in a certificate of unsatisfiability that
can be much smaller than the minimum tree-like resolution refutation.

Previously known lower bounds for satisfiable formulas. Despite the importance
of this problem, only few works have addressed the question of the worst-case
running time of SAT algorithms on satisfiable formulas. There has been two
papers [11, 7] on (specific) local search heuristics; as to DPLL algorithms it
seems all we know are the bounds of [12, 1, 2].

In the work of Nikolenko [12] exponential lower bounds are proved for two
specific DPLL algorithms (called GUC and Randomized GUC) on specially tailored
satisfiable formulas.

Achlioptas, Beame, and Molloy [1] prove the hardness of random formulas
in 3-CNF with n variables and cn (c < 4) clauses for three specific DPLL al-
gorithms (called GUC, UC, and ORDERED-DLL). It is an open problem to prove
that these formulas are satisfiable (though it is widely believed they are). Re-
cently, the same authors [2] have proved an unconditional lower bound on satis-
fiable random formulas in 4-CNF for ORDERED-DLL. The latter result states that
ORDERED-DLL takes exponential time with constant (rather than exponentially
close to 1) probability.

2

Our contribution. Proving such bounds for DPLL algorithms in a greater gen-
erality is the ultimate goal of the present paper. We design two families of satis-
fiable formulas and show lower bounds for two general classes of algorithms (see
Sect. 2.1 for precise definitions).

The first class of formulas simply encodes a linear system Ax = b that has
a unique solution over GF2, where A is a “good” expander. We prove that any
generalized myopic DPLL algorithm that has a local access to the formula (i.e.,
can read up to n1−ε clauses at every step) with high probability has to make an
exponential number of steps before it finds a satisfying assignment.

In our second result we describe a general way to cook a satisfiable formula
out of any unsatisfiable formula hard for tree-like resolution so that the resulting
formula is hard for any drunk DPLL algorithm that chooses a variable in an
arbitrarily complicated way and then tries both its values in a random order.

Both classes of algorithms that we consider are classical DPLL backtracking
algorithms, and in general are much less restricted than those studied before.

Organization of the paper. Section 2 contains basic notation and the rigorous
definitions of DPLL algorithms that we consider. In the subsequent two sections
we present our two main results. We discuss their possible extensions and open
questions in Sect. 5.

The proofs of auxiliary statements are omitted due to the space restrictions;
please refer to the full version [5] for the details.

2 Preliminaries

Let x be a Boolean variable, i.e., a variable that ranges over the set {0, 1}. A
literal of x is either x or ¬x. A clause is a disjunction of literals (considered as a
set). A formula in this paper refers to a Boolean formula in conjunctive normal
form, i.e., a conjunction of clauses (a formula is considered as a multiset). A
formula in k-CNF contains clauses of size at most k. We will use the notation
Vars(Φ), Vars(Ax = b) to denote the set of variables occurring in a Boolean
formula, in a system of equations, etc.

An elementary substitution v := ε just chooses and a Boolean value, namely
ε ∈ {0, 1}, for a variable, namely v. A substitution (also called a partial assign-
ment) is a set of elementary substitutions for different variables. The result of
applying a substitution ρ to a formula F (denoted by F [ρ]) is a new formula
obtained from F by removing the clauses containing literals satisfied by ρ and
removing the opposite literals from other clauses.

We say that an assignment α satisfies a Boolean function f if f(α) =
1. For Boolean functions f1, . . . , fk, g we say that f1, . . . , fk semantically im-
ply g, (denoted f1, . . . , fk |= g), if every assignment to the variables in V =
Vars(f1) ∪ . . . ∪ Vars(fk) ∪ Vars(g) satisfying f1, . . . , fk, satisfies g as well (i.e.
∀α ∈ {0, 1}V (f1(α) = · · · = fk(α) = 1⇒ g(α) = 1)).

For a non-negative integer n, let [n] = {1, 2, . . . , n}. For a vector v = (v1, ..., vm)
and index set I ⊆ [m] we denote by vI the subvector with coordinates chosen

3

Algorithm A.
Input: formula F in CNF.
Output: “Satisfiable” or “Unsatisfiable”.

1. Simplify F using simplification rules.
2. If F is empty, return “Satisfiable”.
3. If F contains the empty clause, return “Unsatisfiable”.
4. Choose a variable v using Heuristic A.
5. Choose a Boolean value ε using Heuristic B.
6. If A(F [v := ε]) returns “Satisfiable”, return “Satisfiable”.
7. If A(F [v := ¬ε]) returns “Satisfiable”, return “Satisfiable”.
8. Return “Unsatisfiable”.

Fig. 1. A DPLL algorithm.

according to I. For a matrix A and a set of rows I ⊆ [m] we use the notation
AI for the submatrix of A corresponding to these rows. In particular, we denote
the ith row of A by Ai and identify it with the set {j | Aij = 1}. The cardinality
of this set is denoted by |Ai|.

2.1 DPLL algorithms: general setting

A DPLL algorithm is a recursive algorithm. At each step, it simplifies the input
formula F (without affecting its satisfiability), chooses a variable v in it and
makes two recursive calls for the formulas F [v := 1] and F [v := 0] in some
order; it outputs “Satisfiable” iff at least one of the recursive calls says so (note
that there is no reason to make the second call if the first one was success-
ful). The recursion proceeds until the formula trivializes, i.e., it becomes empty
(hence, satisfiable) or one of the clauses becomes empty (hence, the formula is
unsatisfiable).

A DPLL algorithm is determined by its simplification rules and two heuris-
tics: Heuristic A that chooses a variable and Heuristic B that chooses its value to
be examined first. A formal description is given in Fig. 1. Note that if P = NP
and Heuristic B is not restricted, it can simply choose the correct values and
the algorithm will terminate quickly. Therefore, in order to prove unconditional
lower bounds one has to restrict the simplification rules and heuristics and prove
the result for the restricted model. In this paper, we consider two models: gener-
alized myopic algorithms and drunk algorithms. Both models extend the original
algorithm of [9], which uses the unit clause and pure literal rules and no non-
trivial Heuristics A and B.

Drunk algorithms. Heuristic A of a drunk algorithm can be arbitrarily compli-
cated (even non-recursive). This is compensated by the simplicity of Heuristic
B: it chooses 0 or 1 at random. The simplification rules are

4

Unit clause elimination. If the formula F contains a clause that consists of
a single literal l, replace F by F [l := 1], where l := 1 denotes the elementary
substitution that satisfies the literal l.

Pure literal elimination. If the formula F contains a literal l such that its
negation does not occur in any clause4, replace F by F [l := 1].

Subsumption. If the formula F contains a clause that contains another clause
as a subset, delete the larger clause.

Note that Randomized GUC with pure literal elimination considered in [12] is a
drunk algorithm (that does not use subsumption).

In Section 4 we prove an exponential lower bound on the running time of
drunk algorithms on satisfiable formulas obtained by a simple construction that
uses (known) hard unsatisfiable formulas.

Myopic algorithms. Both heuristics are restricted w.r.t. the parts of formula
that they can read (this can be viewed as accessing the formula via an oracle).
Heuristic A can read

– K(n) clauses of the formula (where n is the number of variables in the
original input formula and K(n) = n1−ε is a function with ε > 0);

– the formula with negation signs removed;
– the number of occurrences of each literal.

Heuristic B may use the information obtained by Heuristic A. The information
revealed about the formula can be used in the subsequent recursive calls (but
not in other branches of the recursion tree).

The only simplification rule is pure literal elimination. Also the unit clause
elimination can be easily implemented by choosing the proper variable and value.
In particular, heuristics ORDERED-DLL, GUC and UC considered in [1] yield gen-
eralized myopic algorithms. Note that our definition generalizes the notion of
myopic algorithms introduced in [3].

Formally, the heuristics are unable to read all clauses containing a variable
if this variable is too frequent. However, it is easy to see that we can restrict
our hard formulas (that we use for proving our exponential lower bound) so that
every variable occurs O(log n) times, see Remark 1.

In Section 3 we prove an exponential lower bound on the running time of
myopic algorithms on satisfiable formulas based on expanders.

2.2 DPLL recursion tree

A DPLL recursion tree is a binary tree (a node may have zero, one, or two
children) in which nodes correspond to the intermediate subproblems that arise
after the algorithm makes a substitution, edges correspond to the recursive calls
on the resulting formulas. The computation of a DPLL algorithm thus can be

4 An occurrence of a positive literal is an occurrence of the corresponding variable
without the negation.

5

considered as depth-first traverse of the recursion tree from the left to the right;
in particular, the rightmost leaf always corresponds to the satisfying assignment
(if any), the overall running time is proportional to the size of the tree.

For a node v in the computation tree by ρv we denote the partial assignment
that was set prior to visiting v, thus the algorithm at v works on the subformula
F [ρv].

2.3 Expanders

An expander is a bounded-degree graph that has many neighbors for every suffi-
ciently small subset of its nodes. Similarly to [4], we use a more general notion of
expander as an m×n matrix. There are two notions of expanders: expanders and
boundary expanders. The latter notion is stronger as it requires the existence of
unique neighbors. However, every good expander is also a boundary expander.

Definition 1. For a set of rows I ⊆ [m] of an m × n matrix A, we define its
boundary ∂AI (or just ∂I) as the set of all j ∈ [n] (called boundary elements)
such that there exists exactly one row i ∈ I that contains j. We say that A is an
(r, s, c)-boundary expander if

1. |Ai| ≤ s for all i ∈ [m], and
2. ∀I ⊆ [m] (|I| ≤ r ⇒ |∂I| ≥ c · |I|).

Matrix A is an (r, s, c)-expander if condition 2 is replaced by

2′. ∀I ⊆ [m] (|I| ≤ r ⇒ |
⋃
i∈I Ai| ≥ c · |I|).

We define the boundary and boundary elements of equation(s) in a linear
system Ax = b similarly to those of rows in a matrix A.

Lemma 1. Any (r, 3, c)-expander is an (r, 3, 2c− 3)-boundary expander.

Proof. Assume that A is (r, 3, c)-expander. Consider a set of its rows I with
|I| ≤ r. Since A is an expander |

⋃
i∈I Ai| ≥ c|I|. On the other hand we may

estimate separately the number of boundary and non-boundary variables which
will give |

⋃
i∈I Ai| ≤ E + (3|I| − E)/2, where E is the number of boundary

variables. This implies E + (3|I| − E)/2 ≥ c|I| and E > (2c− 3)|I|.

3 An exponential lower bound for myopic algorithms

In this section, we prove an exponential lower bound on the running time of
generalized myopic algorithms (described in Sect. 2.1) on satisfiable formulas.
The proof strategy is as follows: we take a full-rank n× n 0/1-matrix A having
certain expansion properties and construct a uniquely satisfiable Boolean for-
mula Φ expressing the statement Ax = b (modulo 2) for some vector b. Then
we prove that if one obtains an unsatisfiable formula from Φ using a reasonable
substitution, the resulting formula is hard for tree-like resolution (the proof is

6

similar to that of [8]). Finally, we show that changing several bits in the vec-
tor b, while changes the satisfying assignment, does not affect the behavior of
a generalized myopic algorithm that did not reveal these bits, which implies it
encounters a hard unsatisfiable formula on its way to the satisfying assignment.

In what follows, we prove the existence of appropriate expanders (Sect. 3.1)
and examine their properties (Sect. 3.2). Then we give the construction of the
corresponding Boolean formulas (Sect. 3.3) and prove the statement concern-
ing the behavior of a generalized myopic algorithm on unsatisfiable formulas
(Sect. 3.4). Finally, we prove our main result of this section (Sect. 3.5).

3.1 The existence of appropriate expanders

We now prove the existence of expanders that we use to construct satisfiable
formulas hard for myopic DPLL algorithms.

Theorem 1. For every sufficiently large n, there exists an n×n non-degenerate
matrix A(n) such that A(n) is an (n/ log14 n, 3, 25/13)-expander.

Let
(
[n]
3

)
be the set of all {0, 1}n-vectors of Hamming weight 3 (i.e., containing

exactly three 1’s). We use a probabilistic construction: the rows of a larger matrix
are drawn at random from the set of all vectors of Hamming weight 3; then we
choose a submatrix of the appropriate size. In order to establish the goal, we
prove two lemmas.

Lemma 2. Let A be a ∆n × n matrix (∆ may depend on n) in which each

row is randomly chosen from
(
[n]
3

)
. Assume that c < 2 is a constant and r =

o
(

n
∆1/(2−c)

)
. Then with probability 1− o(1) the matrix A is an (r, 3, c)-expander.

Proof. The probability pt of the event that there exists a subset of rows I of size
t ≤ r and a subset of columns J ⊇ AI of size bctc is upper bounded as

pt ≤
(
∆n

t

)(
n

bctc

)(
ct

n

)3t

≤
(
e∆n

t

)t (en
ct

)ct(ct
n

)3t

=

[
e1+cc3−c∆

(n
t

)c−2]t
≤

≤
[
e(1+c)/(2−c)c(3−c)/(2−c)r

∆1/(2−c)

n

](2−c)t
.

Clearly, p1 = o(1). Since for sufficiently large n,
∑r
t=1 pt ≤ 2p1, the lemma

follows.

Lemma 3. Let L be a linear subspace of {0, 1}n of codimension k. Let vector v

be chosen uniformly at random from
(
[n]
3

)
. Then Pr[v 6∈ L] = Ω(kn).

Proof. L can be specified as a kernel of a k × n matrix M of full rank (i.e.,
L = {u |Mu = 0}). The product Mv is distributed as a sum of three columns
randomly chosen (without replacement) from the matrix M ; we need to esti-
mate the probability that this sum equals zero. Let Mi1 ,Mi2 ,Mi3 be the three
randomly chosen columns of M .

7

Case 1: k ≥ 3. In this case, consider the vector u = Mi1 +Mi2 . Since rkM = k,
there are at least k− 2 other columns in M different from u. Thus, Mi3 6= u
with probability at least k−2

n .
Case 2: k < 3.

Case 2a: ∃j1j2 ∀j (j 6∈ {j1, j2} ⇒ Mj = Mj1 + Mj2). Since rkM > 0,
either Mi1 or Mi2 is nonzero. With probability 1/n the nonzero column
is chosen as the first column. If this happens, then with probability at
least n−2

n−1 ·
n−3
n−2 the second and the third column are chosen from those

equal to Mi1 + Mi2 . Thus, with probability at least 1
n ·

n−2
n−1 ·

n−3
n−2 ≥

1
2n

Mi1 +Mi2 +Mi3 6= 0.
Case 2b: The condition of case 2a does not hold. Consider the vector u =

Mi1 +Mi2 . By our assumption, there is at least one column j 6∈ {i1, i2}
different from u. With probability at least 1

n−2 this column will be chosen
as the third one.

Proof (of Theorem 1). The estimation of the number ∆n of random vectors that
suffices to obtain a ∆n×n matrix of full rank resembles the analysis of the well-
known “Coupon Collector” problem. Let S0 = ∅, Si+1 = Si ∪ {vi}, vi ∈U

(
[n]
3

)
.

Let T be the first step when the vector system ST is complete. It is easy to see
that the expectation of T is O(n log n): Lemma 3 shows that if the dimension
of Span(Sk) is t then dim Span(Sk+1) = t + 1 with probability Ω

(
n−t
n

)
. Thus

O(n
n−t) steps suffice on average to increase the dimension from t to t + 1. By

linearity of expectation,

ET ≤ O
(
n

n
+

n

n− 1
+

n

n− 2
+ . . .+

n

1

)
= O(n log n).

Let a′ be the constant in the O(·) notation above, i.e., ET ≤ a′n log n. Let

a′′ = a′

ε (we will choose ε later). By Markov inequality,

Pr{T > a′′n log n} < ε.

Let us choose ε and ε′ so that ε + ε′ < 1. For sufficiently large n, Lemma 2
guarantees that A is an (n/ log14 n, 3, 25/13)-expander with probability at least
1− ε′. By the above reasoning, also rkA = n with a positive probability. Thus,
we can choose n linear independent rows of A; the resulting n× n matrix is an
(n/ log14 n, 3, 25/13)-expander.

Remark 1. It is easy to see that one can add an additional requirement: for every
column j, there is only O(log n) rows Ai such that Aij = 1. Using such expanders
would result in hard formulas with only O(log n) occurrences of every variable.

3.2 Closure operators

Throughout this section, A denotes an (r, 3, c)-boundary expander. We need two
operations of taking closure of a set of columns w.r.t. matrix A. The first was
defined in [6].

8

Definition 2. Let A ∈ {0, 1}m×n. For a set of columns J ⊆ [n] define the
following inference relation `J on the sets [m] of rows of A:

I `J I1 ⇐⇒ |I1| ≤ r/2 ∧ ∂A(I1) ⊆

[⋃
i∈I

Ai ∪ J

]
. (1)

That is, we allow to derive rows of A from already derived rows. We can
use these derived rows in further derivations (for example, derive new rows from
I ∪ I1). Let the closure Cl(J) of J be the set of all rows which can be inferred
via `J from the empty set.

The following lemma was proved in [6, Lemma 3.16].

Lemma 4. For any set J with |J | ≤ (cr/2), |Cl(J)| ≤ r/2.

We also need another (stronger) closure operation the intuitive sense of which
is to extract a good expander out of a given matrix by removing rows and
columns.

Definition 3. For an A ∈ {0, 1}m×n and a subset of its columns J ⊆ [n] we
define an inference relation `′J on subsets of rows of A:

I `′J I1 ⇐⇒ |I1| ≤ r/2 ∧

∣∣∣∣∣∂A(I1) \

[⋃
i∈I

Ai ∪ J

]∣∣∣∣∣ < c/2|I1| (2)

Given a set of rows I and a set of columns J consider the following cleaning
step:

– If there exists a nonempty subset of rows I1 such that I `′J I1, then
• Add I1 to I.
• Remove all rows corresponding to I1 from A.

Repeat the cleaning step as long as it is applicable. Fix any particular order
on the sets to exclude ambiguity, initialize I = ∅ and denote the resulting content
of I at the end by Cle(J).

Lemma 5. Assume that A is an arbitrary matrix and J is a set of its columns.
Let I ′ = Cle(J), J ′ =

⋃
i∈Cle(J)Ai. Denote by Â the matrix that results from A

by removing the rows corresponding to I ′ and columns to J ′. If Â is non-empty
than it is an (r/2, 3, c/2)-boundary expander.

Proof. Follows immediately from the definition of Cle.

Lemma 6. If |J | < cr/4, then |Cle(J)| < 2c−1|J |.

Proof. Assume that |Cle(J)| ≥ 2c−1|J |. Consider the sequence I1, I2, . . . , It ap-
pearing in the cleaning procedure; i.e.,

I1 ∪ I2 ∪ . . . ∪ Ik `′J Ik+1.

9

Note that Ii ∩ Ii′ = ∅ for i 6= i′, because we remove the implied set of rows from
A at each cleaning step. Denote by Ct =

⋃t
k=1 Ik the set of rows derived in t

steps.
Let T be the first t such that |Ct| ≥ 2c−1|J |. Note that |CT | ≤ 2c−1|J | +

r/2 ≤ r, hence |J | < cr/4 ≤ c|CT |/4. Because of the expansion properties of A,
∂CT ≥ c|CT |, which implies

|∂CT \ J | ≥ c|CT | − |J | > c|CT |/2. (3)

On the other hand, every time we add some It+1 to Ct during the cleaning
procedure, only c/2|It+1| new elements can be added to ∂Ct\J (of those elements
that have never been there before). This implies

|∂CT \ J | ≤ c|CT |/2,

which contradicts (3).

3.3 Hard formulas based on expanders

Let A be an n × n matrix provided by Theorem 1, let also r = n/ log14 n,
c′ = 25/13 be the parameters of the theorem. Denote c = 2c′ − 3 (thus A is an
(r, 3, c)-boundary expander).

Definition 4. Let b be a vector from {0, 1}n. Then Φ(b) is the formula express-
ing the equality Ax = b (modulo 2), namely, every equation aij1xj1 + aij2xj2 +
aij3xj3 = bi is transformed into the 4 clauses on xj1 , xj2 , xj3 satisfying all its
solutions. Sometimes we identify an equation with the corresponding clauses.

Remark 2. The formula Φ(b) has several nice properties that we use in our
proofs. First, note that Φ(b) has exactly one satisfying assignment (since rkA =
n). It is also clear that a myopic DPLL algorithm has no reasonable chance to
apply pure literal elimination to it, because for any substitution ρ, the formula
Φ(b)[ρ] never contains a pure literal unless this pure literal is contained in a
unit clause. Moreover, the number of occurrences of a literal in Φ(b)[ρ] always
equals the number of occurrences of the opposite literal (recall that a formula
is a multiset of clauses); again the only exception is literals occurring in unit
clauses.

To the abuse of notation we identify j ∈ J (where J is a set of columns of
A) with the variable xj .

3.4 Behavior of myopic algorithms on unsatisfiable formulas

Definition 5. A substitution ρ is said to be locally consistent w.r.t. the linear
system Ax = b if and only if ρ can be extended to an assignment on X which
satisfies the equations corresponding to Cl(ρ):

ACl(ρ)x = bCl(ρ).

10

Lemma 7. Assume that A is (r, 3, c)-boundary expander, Let b ∈ {0, 1}m and
ρ is a locally consistent partial assignment. Then for any set I ⊂ [m] with |I| ≤
r/2, ρ can be extended to an assignment x which satisfies the subsystem AIx =
bI .

Proof. Assume for the contradiction that there exists set I for which ρ cannot be
extended to satisfy AIx = bI ; choose the minimal such I. Then ∂A(I) ⊆ Vars(ρ),
otherwise one could remove an equation with boundary variable in ∂A(I)\Vars(ρ)
from I. Thus, Cl(ρ) ⊇ I, which contradicts Definition 5.

The width [8] of a resolution proof is the maximal length of a clause in the
proof. We need the following lemma which is a straightforward generalization of
[8, Theorem 4.4].

Lemma 8. For any matrix A which is an (r, 3, c)-boundary expander and any
vector b 6∈ Im(A) any resolution proof of the system

Ax = b (4)

must have width at least cr/2.

Proof. For a clause C define Ben-Sasson–Wigderson measure as

µ(C) = min
(AIx=bI)|=C

|I|.

Similarly to the proof of [8, Theorem 4.4], µ is a subadditive measure, for any
D appearing in the translation5 of (4) to CNF µ(D) = 1 and µ(∅) ≥ r (the
latter inequality follows from the fact that any set I ′ (I ′ |= ∅) with |I ′| < r has
a non-empty boundary, and an equality containing a boundary variable can be
removed from the subsystem AI′x = bI′ leaving it still contradictory).

It follows that any resolution refutation of the system (4) contains a clause
C s.t. r/2 ≤ µ(C) < r. Consider a minimal I s.t. (AIx = bI) |= C. As in [8]
we claim that C has to contain all variables corresponding to ∂A(I). Indeed, if
there exists a boundary variable in the equation Aix = bi (i ∈ I) not included
in C then we may remove this equation so that (A[I\i]x = b[I\i]) |= C. Thus, C
contains all boundary variables of I and there are at least c|I| ≥ cr/2 of them.

We also need the following lemma from [8]:

Lemma 9 ([8, Corollary 3.4]). The size of any tree-like resolution refutation
of a formula Ψ is at least 2w−wΨ , where w is the minimal width of a resolution
refutation of Ψ , and wΨ is the maximal length of a clause in Ψ .

Lemma 10. If a locally consistent substitution ρ s.t. |Vars(ρ)| ≤ cr/4 results in
an unsatisfiable formula Φ(b)[ρ] then every generalized myopic DPLL algorithm
would take 2Ω(r) time on Φ(b)[ρ].

5 See Definition 4.

11

Proof. The work of any DPLL algorithm on an unsatisfiable formula can be
translated to tree-like resolution refutation so that the size of the refutation is
the working time of the algorithm. Thus, it is sufficient to show that the minimal
tree-like resolution refutation size of Φ(b)[ρ] is large.

Denote by I = Cle(ρ), J =
⋃
i∈I Ai. By Lemma 6 |I| ≤ r/2. By Lemma 7

ρ can be extended to another partial assignment ρ′ on variables xJ , s.t. ρ′ sat-
isfies every linear equation in AIx = bI . The restricted formula (Ax = b)|ρ′
still encodes an unsatisfiable linear system, A′x = b′, where matrix A′ results
from A by removing rows corresponding to I and variables corresponding to J .
By Lemma 5, A′ is an (r/2, 3, c/2)-boundary expander. Lemmas 8 and 9 now
imply that the minimal tree-like resolution refutation of the Boolean formula
corresponding to the system A′x = b′ has size 2Ω(r).

3.5 Behavior of myopic algorithms on satisfiable formulas

We fix A, r, c, c′ of Sect. 3.3 and m = m(n) = n throughout this section.

Theorem 2. For every deterministic generalized myopic DPLL algorithm A
that reads at most K = K(n) clauses per step, A stops on Φ(b) in 2o(r) steps
with probability 2−Ω(r/K). The probability is taken over b uniformly distributed
on {0, 1}n.

Corollary 1. Let A be any (randomized) generalized myopic DPLL algorithm
that reads at most K = K(n) clauses per step. A stops on Φ(b) (a satisfiable
formula in 3-CNF containing n variables and 4n clauses, described in Sect. 3.3)

in 2o(n log−14 n) steps with probability 2−Ω(K−1n log−14 n) (taken over random bits
used by the algorithm and over b uniformly distributed on {0, 1}n).

Proof (Proof of Theorem 2). The proof strategy is to show that during its very
first steps the algorithm does not get enough information to guess a correct
substitution with non-negligible probability. Therefore, the algorithm chooses
an incorrect substitution and has to examine an exponential-size subtree by
Lemma 10.

Without loss of generality, we assume that our algorithm is a clever myopic
algorithm. We define a clever myopic algorithm w.r.t. matrix A as a generalized
myopic algorithm (defined as in Section 2.1) that

– has the following ability: whenever it reveals occurrences of the variables xJ
(at least one entry of each) it can also read all clauses in Cl(J) for free and
reveal the corresponding occurrences;

– never asks for a number of occurrences of a literal (syntactical properties of
our formula imply that A can compute this number itself: the number of
occurrences outside unit clauses does not depend on the substitutions that
A has made; all unit clauses belong to Cl(J));

– always selects one of the revealed variables;

12

– never makes stupid moves: whenever it reveals the clauses ~C and chooses
the variable xj for branching it makes the right assignment xj = ε in the

case when ~C semantically imply xj = ε (this assumption can only save the
running time).

Proposition 1. After the first b cr6K c steps a clever myopic algorithm reads at
most r/2 bits of b.

Proof. At each step the algorithm makes K clause queries, asking for 3K variable
entries. This will sum up to 3K(cr/(6K)) variables which will result by Lemma 4
in at most r/2 revealed bits of b.

Recall that an assignment ρ is locally consistent if it can be extended to an
assignment that satisfies ACl(ρ)x = bCl(ρ).

Proposition 2. During the first b cr6K c steps the current partial assignment made
by a clever myopic algorithm is locally consistent (in particular, the algorithms
does not backtrack).

Proof. The statement follows by repeated application of Lemma 7. Note that the
definition of clever myopic algorithm requires that it chooses a locally consistent
assignment if possible.

Formally we prove the proposition by induction. In the beginning of the exe-
cution the current partial assignment is empty, hence it is locally consistent. By
the definition of a clever myopic algorithm, whenever it makes a step t (where
t < b cr6K c) having a locally consistent partial assignment ρt it extends this as-
signment to an assignment ρt+1 that is also locally consistent if possible. By
Lemma 7 it can always do so as long as |Cl(Vars(ρt)∪{xj})| ≤ r/2 for the newly
chosen variable xj .

Assume now that b chosen at random is hidden from A. Whenever an algo-
rithm reads the information about a clause corresponding to the linear equation
Aix = bi it reveals the ith bit of b. Let us observe the situtation after the first
b cr6K c steps of A, i.e., the b cr6K c-th vertex v in the leftmost branch in the DPLL
tree of the execution of A. By Proposition 1 the algorithm reads at most r/2 bits
of b. Denote by Iv ⊂ [m] the set of the revealed bits, and by Rv the set of the
assigned variables, |Rv| = b cr6K c. The idea of the proof is that A cannot guess
the true values of xRv by observing only r bits of b. Denote by ρv the partial
assignment to the variables in Rv made by A. Consider the following event

E = {(A−1b)Rv = ρv}
(recall that our probability space is defined by the 2m possible values of b). This
event holds if and only if the formula Φ(b)|ρv is satisfiable. For I ⊂ [m], R ⊂
[n],~ε ∈ {0, 1}I , ρ ∈ {0, 1}R we want to estimate the conditional probability

Pr[E | Iv = I, Rv = R, bIv = ~ε, ρv = ρ]. (5)

If we show that this conditional probability is small (irrespectively of the choice
of I, R, ~ε , and ρ), it will follow that the probability of E is small.

We use the following lemma (and delay its proof for a moment).

13

Lemma 11. Assume that an m × n matrix A is an (r, 3, c′)-expander, X =
{x1, . . . , xn} is a set of variables, X̂ ⊆ X, |X̂| < r, b ∈ {0, 1}m, and L =
{`1, . . . , `k} (where k < r) is a tuple of linear equations from the system Ax = b.
Denote by L the set of assignments to the variables in X̂ that can be extended

to X to satisfy L. If L is not empty then it is an affine subspace of {0, 1}X̂ of

dimension greater than |X̂|
(

1
2 −

14−7c′
2(2c′−3)

)
.

Choose L = {Aix = εi}i∈I , X = Vars(L), X̂ = R, |X̂| = bcr/(6K)c, recall
that c′ = 25/13. Then Lemma 11 says that dimL > 2

11 |R|, where L is the set of
locally consistent assignments to the variables in R. Let

(b̂)i =

{
εi, i ∈ I,
bi, otherwise

.

Note that b̂ has the distribution of b when we fix Iv = I and bI = ~ε. The vector
b̂ is independent from the event E1 = [Iv = I ∧Rv = R∧ bIv = ~ε∧ ρv = ρ]. This
is because in order to determine whether E1 holds it is sufficient to observe the
bits bI only. Clearly, (A−1b̂)R is distributed uniformly on L (note that A is a
bijection), thus

Pr[E | Iv = I, Rv = R, bIv = ~ε, ρv = ρ]

= Pr[(A−1b̂)R = ρ | Iv = I, Rv = R, bIv = ~ε, ρv = ρ]

= Pr[(A−1b̂)R = ρ]

≤ 2− dimL < 2−
2
11 |R| ≤ 2−

cr
1000K .

However, if E does not happen then by Lemma 10 it takes time 2Ω(r) for A to
refute the resulting unsatisfiable system (note that by Proposition 2 the assign-
ment ρv is locally consistent).

Proof (of Lemma 11). First we repeatedly eliminate variables and equations
from L until we get rid of

(1) equations containing boundary variables not from X̂;
(2) equations containing more than one boundary variable.

This is done by the repetition of the following two procedures (in any order) as
long as at least one of them is applicable:

Procedure 1. If L contains an equation ` with boundary element j ∈ ∂L s.t.
xj 6∈ X̂, then remove ` from L.

Note that Procedure 1 does not change L and X̂. Therefore, if the claim of our
lemma holds for the new system and new X̂, it holds for the original one as well.

Procedure 2. If L contains an equation ` with at least two boundary elements
j1, j2 s.t. xj1 , xj2 ∈ X̂, then remove ` from L and all these (two or three)

boundary elements from X̂.

14

This procedure decreases |X̂| by 2 (or by 3) and decreases dimL by 1 (resp., by
2). Therefore, if the claim of our lemma holds for the new system and new X̂,
it holds for the original one as well.

Thus, it is enough to prove the claim of our lemma for the case where none of
the procedures above is applicable to L. Then ∂L is covered by X̂; in particular,

k(2c′ − 3) ≤ |∂L| ≤ |X̂|,

which implies

k ≤ |X̂|
2c′ − 3

. (6)

(Note that we have used Lemma 1 here.) Denote by L′ ⊆ L the subset of
equations that contain at least one variable from X̂. Since none of them contains
two boundary variables, and there are at least k(2c′−3) such boundary variables,

|L′| ≥ k(2c′ − 3).

Let L̄ = L \ L′. We have

|L̄| ≤ k(1− (2c′ − 3)) = k(4− 2c′).

Finally, since A is an (r, 3, c′)-expander, |Vars(L)| ≥ c′k. On the other hand,
|Vars(L̄)| ≤ 3|L̄| ≤ k(12 − 6c′). Thus, the number of variables in L′ is at least
k(c′ − (12− 6c′)) = k(7c′ − 12).

We now apply Gaussian elimination to the set L′. Namely, we subsequently
consider variables y ∈ Vars(L′) \ X̂ and make substitutions y = . . . with the
corresponding linear forms. It is clear that during this process every equation in
(the modified) L′ still contains at most 2 variables not from X̂. Also, each sub-
stitution decreases the number of variables in Vars(L′)\X̂ at most by two. Thus
the Gaussian elimination has to make at least (k(7c′−12)−|X̂|)/2 substitutions
before all variables in Vars(L′) \ X̂ are eliminated.

After this, the values of variables in X̂ are determined by the remaining
system that contains at most

k − k(7c′ − 12)− |X̂|
2

=
14k − 7kc′ + |X̂|

2

linear equations (containing only variables in X̂); hence, the dimension of L is
lower bounded by

|X̂| − 14k − 7kc′ + |X̂|
2

≥ |X̂|
(

1

2
− 14− 7c′

2(2c′ − 3)

)
,

(here we used (6)).

15

4 An exponential lower bound for drunk algorithms

In this section, we prove an exponential lower bound on the running time of
drunk algorithms (described in Sect. 2.1) on satisfiable formulas. The proof strat-
egy is as follows: we take a known hard unsatisfiable formula G and construct a
new satisfiable formula that turns into G if the algorithm chooses a wrong value
for some variable. Since for several tries the algorithms errs at least once with
high probability, it follows that the recursive procedure is likely to be called on
G and hence will take an exponential time.

In what follows, we give the construction of our hard satisfiable formulas
(citing the construction of hard unsatisfiable formulas), then prove two (almost
trivial) formal statements for the behavior of DPLL algorithms on hard unsat-
isfiable formulas, and, finally, prove the main result of this section.

Since the size of recursion tree for an unsatisfiable formula does not depend
on the random choices of a drunk algorithm, we can assume that our algorithm
has the smallest possible recursion tree for every unsatisfiable formula. We call
such an algorithm an “optimal” drunk algorithm.

4.1 Hard satisfiable formulas based on hard unsatisfiable formulas

Our formulas are constructed from known hard unsatisfiable formulas. For ex-
ample, we can take hard unsatisfiable formulas from [13].

Theorem 3 ([13], Theorem 1). For each k ≥ 3 there exist a positive constant
ck = O(k−1/8), a function f(x) = Ω(2x(1−ck)) and a sequence of unsatisfiable
formulas Gn in k-CNF (for each l, Gl uses exactly l variables) such that all
tree-like resolution proofs of Gn have size at least f(n).

Corollary 2. The recursion tree of the execution of a drunk DPLL algorithm
on the formula Gn from Theorem 3 (irrespectively of the random choices made
by the algorithm) has at least f(n) nodes.

Proof. It is well-known that tree-like resolution proofs and DPLL trees are equiv-
alent. Note that the subsumption rule cannot reduce the size of a DPLL tree.

Remark 3. We do not use other facts about these formulas; therefore, our con-
struction works for any sequence of formulas satisfying a similar statement.

Definition 6. Let us fix n. We call an unsatisfiable formula F (we do not as-
sume that F contains n variables) hard if the recursion tree of the execution of
(every) “optimal” drunk algorithm on F has at least f ′(n) = (f(n)−1)/2 nodes,
where f is the function appearing in Theorem 3.

Definition 7. We consider formulas of the form6 Hn = G(1)∧G(2)∧· · ·∧G(n),

where G(i) is the formula in CNF of n variables7 x
(i)
1 , . . . , x

(i)
n (for all i 6= j, the

6 Note that the subscript in Hn does not denote the number of variables.
7 It is possible that some of these variables do not appear in the formula; therefore,

formally, a formula is a pair: a formula and the number of its variables.

16

sets of variables of the formulas G(i) and G(j) are disjoint) defined as follows.

Take a copy of the hard formula from Theorem 3; call its variables x
(i)
j and

the formula G̃(i). Then change the signs of some literals in G̃(i) (this is done by
replacing all occurrences of a positive literal l with ¬l and, simultaneously, of the
negative literal ¬l with l) so that the recursion tree of the execution of (every)

“optimal” drunk algorithm on G̃(i)[¬x(i)j] is not smaller than that on G̃(i)[x
(i)
j]

(hence, G̃(i)[¬x(i)j] is hard). Use the (modified) formula G̃(i) to construct the

formula8 (G̃(i) ∨ x(i)1)∧ (G̃(i) ∨ x(i)2)∧ · · · ∧ (G̃(i) ∨ x(i)n) and simplify it using the
simplification rules; the obtained formula is G(i).

Remark 4. We change signs of literals only to simplify the proof of our result;
one can think that the algorithm is actually given the input formula without the
change.

Remark 5. It is clear that Hn has size polynomial in n (and hence in the number
of variables).

4.2 Behavior of drunk algorithms on unsatisfiable formulas

Lemma 12. Let G be a hard formula. Let F be a formula having exactly one
satisfying assigment. Let the sets of variables of F and G be disjoint. Then the
formula F ∧G is hard.

Proof. The statement is easy to see (note that hardness does not depend on
the number of variables in the formula): a recursion tree for the formula F ∧G
correspond to a recursion tree for the formula G.

Lemma 13. The formula G(i)[¬x(i)j] is hard.

Proof. For each formula F by Simplify(F) we denote the result of applying the
simplification rules to F (the rules are applied as long as at least one of them
is applicable). It is easy to see that this formula is uniquely defined (note that
our simplification rules commute with each other). By our definition of a DPLL
algorithm, F is hard if and only if Simplify(F) is hard. Note that

Simplify(G(i)[¬x(i)j]) =

Simplify((G̃(i)[¬x(i)j] ∨ x(i)1) ∧ · · · ∧ (G̃(i)[¬x(i)j]) ∧ · · · ∧ (G̃(i)[¬x(i)j] ∨ x(i)n)) =

Simplify(G̃(i)[¬x(i)j]).

(The last equality is obtained by applying the subsumption rule.) The formula

Simplify(G̃(i)[¬x(i)j]) is hard since G̃(i)[¬x(i)j] is hard.

8 We use G ∨ x to denote a formula in CNF: x is added to each clause of G, and the
clauses containing ¬x are deleted.

17

4.3 Behavior of drunk algorithms on satisfiable formulas

Theorem 4. The size of the recursion tree of the execution of a drunk DPLL
algorithm on input Hn is less than f ′(n) with probability at most 2−n.

Proof. The unique satisfying assignment to Hn is x
(i)
j = 1. Note that Hn[¬x(i)j]

contains an unsatisfiable subformula G(i)[¬x(i)j].

Consider the splitting tree of our algorithm on input Hn. It has exactly
one leaf corresponding to the satisfying assignment. We call node w on the
path corresponding to the satisfying assignment critical, if Heuristic A chooses a

variable x
(i)
m for this node and this is the first time a variable from the subformula

G(i) is chosen along this path. A critical subtree is the subtree corresponding to
the unsatisfiable formula resulting from substituting a “wrong” value in a critical
node.

By Lemmas 12 and 13 the size of a critical subtree is at least f ′(n) (note that
the definition of a critical node implies that the corresponding subformula G(i)

is untouched in it and hence its child contains a hard subformula G(i)[¬x(i)j]; it is

clear that the simplification rules could not touch G(i) before the first assignment
to its variables).

The probability of choosing the value x
(i)
j = 0 equals 1

2 . There are n critical
nodes on the path leading to the satisfying assignment; therefore the probability
that the algorithm does not go into any critical subtree equals 2−n. Note that if
it ever goes into a critical subtree, it has to examine all its nodes, and there are
at least f ′(n) of them.

Corollary 3. For each k ≥ 3 there exist a positive constant ck = O(k−1/8),
a function g(x) = Ω(2x(1−ck)) and a sequence of unsatisfiable formulas Hn in
(k + 1)-CNF (Hn uses m variables, where n ≤ m ≤ n2) such that the size of
recursion tree of the execution of any drunk DPLL algorithm on input Hn is less
than g(n) with probability at most 2−n.

5 Discussion

Various generalizations of the notions of myopic and drunk algorithms would
guide to natural extensions of our results. However, note that merging the notions
into one is not easy: if Heuristic A is not restricted, it can feed information
to Heuristic B even if it is not enabled directly (for example, it can choose
variables that are to be assigned 1 while they persist). Therefore, Heuristic B
must have oracle access that would hide syntactical properties of the formula so
that Heuristic B would not gain any other information from Heuristic A except
for “branching on the variable v is nice”. For example, the oracle must randomly
rename variables, (consistently) negate some of them, change the order of clauses,
etc.

18

Acknowledgment

The authors are grateful to Eli Ben-Sasson for helpful discussions and to anony-
mous referees for numerous comments that improved the quality of this paper.

References

1. Dimitris Achlioptas, Paul Beame, and Michael Molloy. A sharp threshold in proof
complexity. Journal of Computer and System Sciences, 2003.

2. Dimitris Achlioptas, Paul Beame, and Michael Molloy. Exponential bounds for
DPLL below the satisfiability threshold. In Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA’04, pages 139–140. Society
for Industrial and Applied Mathematics, 2004.

3. Dimitris Achlioptas and Gregory B. Sorkin. Optimal myopic algorithms for random
3-SAT. In Proceedings of the 41st Annual IEEE Symposium on Foundations of
Computer Science, FOCS’00, 2000.

4. M. Alekhnovich, E. Ben-Sasson, A. Razborov, and A. Wigderson. Pseudorandom
generators in propositional complexity. In Proceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Science, FOCS’00, 2000. Journal version
is to appear in SIAM Journal on Computing.

5. M. Alekhnovich, E. A. Hirsch, and D. Itsykson. Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. Manuscript, available
from http://www.ias.edu/~misha/, 2004.

6. M. Alekhnovich and A. Razborov. Lower bounds for the polynomial calculus: non-
binomial case. In Proceedings of the 42nd Annual IEEE Symposium on Foundations
of Computer Science, 2001.

7. Michael Alekhnovich and Eli Ben-Sasson. Analysis of the random walk algorithm
on random 3-CNFs. Manuscript, 2002.

8. E. Ben-Sasson and A. Wigderson. Short proofs are narrow — resolution made
simple. Journal of ACM, 48(2):149–169, 2001.

9. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

10. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7:201–215, 1960.

11. Edward A. Hirsch. SAT local search algorithms: Worst-case study. Journal of
Automated Reasoning, 24(1/2):127–143, 2000. Also reprinted in “Highlights of
Satisfiability Research in the Year 2000”, Volume 63 in Frontiers in Artificial In-
telligence and Applications, IOS Press.

12. S. I. Nikolenko. Hard satisfiable formulas for DPLL-type algorithms. Zapiski
nauchnyh seminarov POMI, 293:139–148, 2002. English translation is to appear
in Journal of Mathematical Sciences.

13. Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for
k-SAT. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’00, 2000.

14. Laurent Simon, Daniel Le Berre, and Edward A. Hirsch. The SAT 2002 Competi-
tion. Annals of Mathematics and Artificial Intelligence, 43:307–342, 2005.

15. G. S. Tseitin. On the complexity of derivation in the propositional calculus. Zapiski
nauchnykh seminarov LOMI, 8:234–259, 1968. English translation of this volume:
Consultants Bureau, N.Y., 1970, pp. 115–125.

19

